Analysts develop a “no threat” bias with high false alarms. If only shown alarms for actual attacks, may never actually see an alarm. We see this in the laboratory, but not often studied in applied environments. (TSA is an exception.) In this work, near-operational paradigms are useful, but difficult to construct well. Pilot testing is critical before engaging time-limited professionals. Experimental control is difficult to balance with operational realism. Grounding near-operational experiments in basic research paradigms has both advantages and disadvantages. Despite shortcomings in our second experiment, we now have a platform for experimental investigations into the human element of physical security systems.
Research shows that individuals often overestimate their knowledge and performance without realizing they have done so, which can lead to faulty technical outcomes. This phenomenon is known as the Dunning-Kruger effect (Kruger & Dunning, 1999). This research sought to determine if some individuals were more prone to overestimating their performance due to underlying personality and cognitive characteristics. To test our hypothesis, we first collected individual difference measures. Next, we asked participants to estimate their performance on three performance tasks to assess the likelihood of overestimation. We found that some individuals may be more prone to overestimating their performance than others, and that faulty problem-solving abilities and low skill may be to blame. Encouraging individuals to think critically through all options and to consult with others before making a high-consequence decision may reduce overestimation.
Physical security systems (PSS) and humans are inescapably tied in the current physical security paradigm. Yet, physical security system evaluations often end at the console that displays information to the human. That is, these evaluations do not account for human-in-The-loop factors that can greatly impact performance of the security system, even though methods for doing so are well-established. This paper highlights two examples of methods for evaluating the human component of the current physical security system. One of these methods is qualitative, focusing on the information the human needs to adequately monitor alarms on a physical site. The other of these methods objectively measures the impact of false alarm rates on threat detection. These types of human-centric evaluations are often treated as unnecessary or not cost effective under the belief that human cognition is straightforward and errors can be either trained away or mitigated with technology. These assumptions are not always correct, are often surprising, and can often only be identified with objective assessments of human-system performance. Thus, taking the time to perform human element evaluations can identify unintuitive human-system weaknesses and can provide significant cost savings in the form of mitigating vulnerabilities and reducing costly system patches or retrofits to correct an issue after the system has been deployed.
As system of systems (SoS) models become increasingly complex and interconnected a new approach is needed to capture the effects of humans within the SoS. Many real-life events have shown the detrimental outcomes of failing to account for humans in the loop. This research introduces a novel and cross-disciplinary methodology for modeling humans interacting with technologies to perform tasks within an SoS specifically within a layered physical security system use case. Metrics and formulations developed for this new way of looking at SoS termed sociotechnical SoS allow for the quantification of the interplay of effectiveness and efficiency seen in detection theory to measure the ability of a physical security system to detect and respond to threats. This methodology has been applied to a notional representation of a small military Forward Operating Base (FOB) as a proof-of-concept.
System-of-systems modeling has traditionally focused on physical systems rather than humans, but recent events have proved the necessity of considering the human in the loop. As technology becomes more complex and layered security continues to increase in importance, capturing humans and their interactions with technologies within the system-of-systems will be increasingly necessary. After an extensive job-task analysis, a novel type of system-ofsystems simulation model has been created to capture the human-technology interactions on an extra-small forward operating base to better understand performance, key security drivers, and the robustness of the base. In addition to the model, an innovative framework for using detection theory to calculate d’ for individual elements of the layered security system, and for the entire security system as a whole, is under development.
The Transportation Security Administration has a large workforce of Transportation Security Officers, most of whom perform interrogation of x-ray images at the passenger checkpoint. To date, TSOs on the x-ray have been limited to a 30-min session at a time, however, it is unclear where this limit originated. The current paper outlines methods for empirically determining if that 30-min duty cycle is optimal and if there are differences between individual TSOs. This work can inform scheduling TSOs at the checkpoint and can also inform whether TSOs should continue to be cross-trained (i.e., performing all 6 checkpoint duties) or whether specialization makes more sense.
Visual search data describe people’s performance on the common perceptual problem of identifying target objects in a complex scene. Technological advances in areas such as eye tracking now provide researchers with a wealth of data not previously available. The goal of this work is to support researchers in analyzing this complex and multimodal data and in developing new insights into visual search techniques. We discuss several methods drawn from the statistics and machine learning literature for integrating visual search data derived from multiple sources and performing exploratory data analysis. We ground our discussion in a specific task performed by officers at the Transportation Security Administration and consider the applicability, likely issues, and possible adaptations of several candidate analysis methods.
Performance at Transportation Security Administration (TSA) airport checkpoints must be consistently high to skillfully mitigate national security threats and incidents. To accomplish this, Transportation Security Officers (TSOs) must exceptionally perform in threat detection, interaction with passengers, and efficiency. It is difficult to measure the human attributes that contribute to high performing TSOs because cognitive ability such as memory, personality, and competence are inherently latent variables. Cognitive scientists at Sandia National Laboratories have developed a methodology that links TSOs’ cognitive ability to their performance. This paper discusses how the methodology was developed using a strict quantitative process, the strengths and weaknesses, as well as how this could be generalized to other non-TSA contexts. The scope of this project is to identify attributes that distinguished high and low TSO performance for the duties at the checkpoint that involved direct interaction with people going through the checkpoint.
Visual search has been an active area of research – empirically and theoretically – for a number of decades, however much of that work is based on novice searchers performing basic tasks in a laboratory. This paper summarizes some of the issues associated with quantifying expert, domain-specific visual search behavior in operationally realistic environments.
The human factors team in the Mission Analysis Division of TSA’s Office of Security Capabilities explores the impact of technology, policies, procedures, and training on human systems performance during transportation security operations. This paper highlights some of the most critical human factors challenges currently facing the aviation security community and provides an overview of innovative on-going human factors projects at TSA that will address some of these challenges by enhancing performance assessment capabilities, improving training opportunities, and optimizing duty rotations and assignments.
Numerous domains, ranging from medical diagnostics to intelligence analysis, involve visual search tasks in which people must find and identify specific items within large sets of imagery. These tasks rely heavily on human judgment, making fully automated systems infeasible in many cases. Researchers have investigated methods for combining human judgment with computational processing to increase the speed at which humans can triage large image sets. One such method is rapid serial visual presentation (RSVP), in which images are presented in rapid succession to a human viewer. While viewing the images and looking for targets of interest, the participant’s brain activity is recorded using electroencephalography (EEG). The EEG signals can be time-locked to the presentation of each image, producing event-related potentials (ERPs) that provide information about the brain’s response to those stimuli. The participants’ judgments about whether or not each set of images contained a target and the ERPs elicited by target and non-target images are used to identify subsets of images that merit close expert scrutiny [1]. Although the RSVP/EEG paradigm holds promise for helping professional visual searchers to triage imagery rapidly, it may be limited by the nature of the target items. Targets that do not vary a great deal in appearance are likely to elicit useable ERPs, but more variable targets may not. In the present study, we sought to extend the RSVP/EEG paradigm to the domain of aviation security screening, and in doing so to explore the limitations of the technique for different types of targets. Professional Transportation Security Officers (TSOs) viewed bag X-rays that were presented using an RSVP paradigm. The TSOs viewed bursts of images containing 50 segments of bag X-rays that were presented for 100 ms each. Following each burst of images, the TSOs indicated whether or not they thought there was a threat item in any of the images in that set. EEG was recorded during each burst of images and ERPs were calculated by time-locking the EEG signal to the presentation of images containing threats and matched images that were identical except for the presence of the threat item. Half of the threat items had a prototypical appearance and half did not. We found that the bag images containing threat items with a prototypical appearance reliably elicited a P300 ERP component, while those without a prototypical appearance did not. These findings have implications for the application of the RSVP/EEG technique to real-world visual search domains.