Wireless Temperature Sensing Using Permanent Magnets for Nonlinear Feedback Control of Exothermic Polymers
IEEE Sensors Journal
Epoxies and resins can require careful temperature sensing and control in order to monitor and prevent degradation. To sense the temperature inside a mold, it is desirable to utilize a small, wireless sensing element. In this paper, we describe a new architecture for wireless temperature sensing and closed-loop temperature control of exothermic polymers. This architecture is the first to utilize magnetic field estimates of the temperature of permanent magnets within a temperature feedback control loop. We further improve performance and applicability by demonstrating sensing performance at relevant temperatures, incorporating a cure estimator, and implementing a nonlinear temperature controller. This novel architecture enables unique experimental results featuring closed-loop control of an exothermic resin without any physical connection to the inside of the mold. In this paper, we describe each of the unique features of this approach, including magnetic field-based temperature sensing, extended Kalman filtering for cure state estimation, and nonlinear feedback control over time-varying temperature trajectories. We use experimental results to demonstrate how low-cost permanent magnets can provide wireless temperature sensing up to ∼ 90°C. In addition, we use a polymer cure-control testbed to illustrate how internal temperature sensing can provide improved temperature control over both short and long time-scales. This wireless temperature sensing and control architecture holds value for a range of manufacturing applications.