Publications

Results 1–25 of 31
Skip to search filters

An algebraic multigrid method for Q2−Q1 mixed discretizations of the Navier–Stokes equations

Numerical Linear Algebra with Applications

Prokopenko, Andrey V.; Tuminaro, Raymond S.

Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily colocated at mesh points. Specifically, we investigate a Q2−Q1 mixed finite element discretization of the incompressible Navier–Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees of freedom (DOFs) are defined at spatial locations where there are no corresponding pressure DOFs. Thus, AMG approaches leveraging this colocated structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity DOF relationships of the Q2−Q1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity DOFs resembles that on the finest grid. To define coefficients within the intergrid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier–Stokes problems.

More Details

Ifpack2 User's Guide 1.0

Prokopenko, Andrey V.; Siefert, Christopher S.; Hu, Jonathan J.; Hoemmen, Mark F.; Klinvex, Alicia M.

This is the definitive user manual for the I FPACK 2 package in the Trilinos project. I FPACK 2 pro- vides implementations of iterative algorithms (e.g., Jacobi, SOR, additive Schwarz) and processor- based incomplete factorizations. I FPACK 2 is part of the Trilinos T PETRA solver stack, is templated on index, scalar, and node types, and leverages node-level parallelism indirectly through its use of T PETRA kernels. I FPACK 2 can be used to solve to matrix systems with greater than 2 billion rows (using 64-bit indices). Any options not documented in this manual should be considered strictly experimental .

More Details

Towards extreme-scale simulations for low mach fluids with second-generation trilinos

Parallel Processing Letters

Lin, Paul L.; Bettencourt, Matthew T.; Domino, Stefan P.; Fisher, Travis C.; Hoemmen, Mark F.; Hu, Jonathan J.; Phipps, Eric T.; Prokopenko, Andrey V.; Rajamanickam, Sivasankaran R.; Siefert, Christopher S.; Kennon, Stephen

Trilinos is an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. While Trilinos was originally designed for scalable solutions of large problems, the fidelity needed by many simulations is significantly greater than what one could have envisioned two decades ago. When problem sizes exceed a billion elements even scalable applications and solver stacks require a complete revision. The second-generation Trilinos employs C++ templates in order to solve arbitrarily large problems. We present a case study of the integration of Trilinos with a low Mach fluids engineering application (SIERRA low Mach module/Nalu). Through the use of improved algorithms and better software engineering practices, we demonstrate good weak scaling for up to a nine billion element large eddy simulation (LES) problem on unstructured meshes with a 27 billion row matrix on 524,288 cores of an IBM Blue Gene/Q platform.

More Details

The MueLu Tutorial

Hu, Jonathan J.; Wiesner, Tobias A.; Prokopenko, Andrey V.; Gee, Michael W.

The MueLu tutorial is written as a hands-on tutorial for MueLu, the next generation multigrid framework in Trilinos. It covers the whole spectrum from absolute beginners’ topics to expert level. Since the focus of this tutorial is on practical and technical aspects of multigrid methods in general and MueLu in particular, the reader is expected to have a basic understanding of multigrid methods and its general underlying concepts. Please refer to multigrid textbooks (e.g. [1]) for the theoretical background.

More Details

MueLu User's Guid for Trilinos Version 11.12

Hu, Jonathan J.; Prokopenko, Andrey V.; Wiesner, Tobias A.; Siefert, Christopher S.; Tuminaro, Raymond S.

This is the official user guide for the M UE L U multigrid library in Trilinos version 11.12. This guide provides an overview of M UE L U , its capabilities, and instructions for new users who want to start using M UE L U with a minimum of effort. Detailed information is given on how to drive M UE L U through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms. Finally, readers will find a comprehensive listing of available M UE L U options. Any options not documented in this manual should be considered strictly experimental.

More Details
Results 1–25 of 31
Results 1–25 of 31