Publications

20 Results
Skip to search filters

Neuromorphic Graph Algorithms

Parekh, Ojas D.; Wang, Yipu W.; Ho, Yang H.; Phillips, Cynthia A.; Pinar, Ali P.; Aimone, James B.; Severa, William M.

Graph algorithms enable myriad large-scale applications including cybersecurity, social network analysis, resource allocation, and routing. The scalability of current graph algorithm implementations on conventional computing architectures are hampered by the demise of Moore’s law. We present a theoretical framework for designing and assessing the performance of graph algorithms executing in networks of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze new spiking algorithms for shortest path and dynamic programming problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation. For fair and rigorous comparison with conventional algorithms and architectures, which is challenging but paramount, we develop new models of data-movement in conventional computing architectures. This allows us to prove polynomial-factor advantages, even when we assume a SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a rigorous asymptotic computational advantage for neuromorphic computing.

More Details

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

Abstract not provided.

Provable advantages for graph algorithms in spiking neural networks

Annual ACM Symposium on Parallelism in Algorithms and Architectures

Aimone, James B.; Ho, Yang H.; Parekh, Ojas D.; Phillips, Cynthia A.; Pinar, Ali P.; Severa, William M.; Wang, Yipu W.

We present a theoretical framework for designing and assessing the performance of algorithms executing in networks consisting of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze neuromorphic graph algorithms, focusing on shortest path problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation, and we develop data-movement lower bounds for conventional algorithms. A fair and rigorous comparison with conventional algorithms and architectures is challenging but paramount. We prove a polynomial-factor advantage even when we assume an SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a provable asymptotic computational advantage for neuromorphic computing.

More Details

SECURE: An Evidence-based Approach to Cyber Experimentation

Proceedings - 2019 Resilience Week, RWS 2019

Pinar, Ali P.; Benz, Zachary O.; Castillo, Anya; Hart, Bill; Swiler, Laura P.; Tarman, Thomas D.

Securing cyber systems is of paramount importance, but rigorous, evidence-based techniques to support decision makers for high-consequence decisions have been missing. The need for bringing rigor into cybersecurity is well-recognized, but little progress has been made over the last decades. We introduce a new project, SECURE, that aims to bring more rigor into cyber experimentation. The core idea is to follow the footsteps of computational science and engineering and expand similar capabilities to support rigorous cyber experimentation. In this paper, we review the cyber experimentation process, present the research areas that underlie our effort, discuss the underlying research challenges, and report on our progress to date. This paper is based on work in progress, and we expect to have more complete results for the conference.

More Details

Dynamic programming with spiking neural computing

ACM International Conference Proceeding Series

Aimone, James B.; Pinar, Ali P.; Parekh, Ojas D.; Severa, William M.; Phillips, Cynthia A.; Xu, Helen

With the advent of large-scale neuromorphic platforms, we seek to better understand the applications of neuromorphic computing to more general-purpose computing domains. Graph analysis problems have grown increasingly relevant in the wake of readily available massive data. We demonstrate that a broad class of combinatorial and graph problems known as dynamic programs enjoy simple and efficient neuromorphic implementations, by developing a general technique to convert dynamic programs to spiking neuromorphic algorithms. Dynamic programs have been studied for over 50 years and have dozens of applications across many fields.

More Details

Statistically significant relational data mining :

Berry, Jonathan W.; Leung, Vitus J.; Phillips, Cynthia A.; Pinar, Ali P.; Robinson, David G.

This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publications that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.

More Details

Compressively sensed complex networks

Pinar, Ali P.; Dunlavy, Daniel D.

The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

More Details

LDRD final report : massive multithreading applied to national infrastructure and informatics

Barrett, Brian B.; Hendrickson, Bruce A.; Laviolette, Randall A.; Leung, Vitus J.; Mackey, Greg; Murphy, Richard C.; Phillips, Cynthia A.; Pinar, Ali P.

Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun Niagara and Opteron multi-core chips.

More Details
20 Results
20 Results