Publications / Other Report

Quantitative Performance Assessment of Proxy Apps and Parents (Report for ECP Proxy App Project Milestone ADCD-504-28)

Cook, Jeanine C.; Aaziz, Omar R.; Chen, Si C.; Godoy, William F.; Powell, Amy J.; Watson, Gregory W.; Vaughan, Courtenay T.; Wildani, Avani W.

The ECP Proxy Application Project has an annual milestone to assess the state of ECP proxy applications and their role in the overall ECP ecosystem. Our FY22 March/April milestone (ADCD- 504-28) proposed to: Assess the fidelity of proxy applications compared to their respective parents in terms of kernel and I/O behavior, and predictability. Similarity techniques will be applied for quantitative comparison of proxy/parent kernel behavior. MACSio evaluation will continue and support for OpenPMD backends will be explored. The execution time predictability of proxy apps with respect to their parents will be explored through a carefully designed scaling study and code comparisons. Note that in this FY, we also have quantitative assessment milestones that are due in September and are, therefore, not included in the description above or in this report. Another report on these deliverables will be generated and submitted upon completion of these milestones. To satisfy this milestone, the following specific tasks were completed: Study the ability of MACSio to represent I/O workloads of adaptive mesh codes. Re-define the performance counter groups for contemporary Intel and IBM platforms to better match specific hardware components and to better align across platforms (make cross-platform comparison more accurate). Perform cosine similarity study based on the new performance counter groups on the Intel and IBM P9 platforms. Perform detailed analysis of performance counter data to accurately average and align the data to maintain phases across all executions and develop methods to reduce the set of collected performance counters used in cosine similarity analysis. Apply a quantitative similarity comparison between proxy and parent CPU kernels. Perform scaling studies to understand the accuracy of predictability of the parent performance using its respective proxy application. This report presents highlights of these efforts.