Publications

Publications / Journal Article

On the peridynamic effective force state and multiphase constitutive correspondence principle

Song, Xiaoyu; Silling, Stewart A.

This article concerns modeling unsaturated deformable porous media as an equivalent single-phase and single-force state peridynamic material through the effective force state. The balance equations of linear momentum and mass of unsaturated porous media are presented by defining relevant peridynamic states. The energy balance of unsaturated porous media is utilized to derive the effective force state for the solid skeleton that is an energy conjugate to the nonlocal deformation state of the solid, and the suction force state. Through an energy equivalence, a multiphase constitutive correspondence principle is built between classical unsaturated poromechanics and peridynamic unsaturated poromechanics. The multiphase correspondence principle provides a means to incorporate advanced constitutive models in classical unsaturated porous theory directly into unsaturated peridynamic poromechanics. Numerical simulations of localized failure in unsaturated porous media under different matric suctions are presented to demonstrate the feasibility of modeling the mechanical behavior of such three-phase materials as an equivalent single-phase peridynamic material through the effective force state concept.