Publications Details

Publications / SAND Report

Monitoring and Repair of Cement-Geomaterial Interfaces in Borehole and Repository Scenarios

Matteo, Edward N.; McMahon, Kevin A.; Camphouse, Russell C.; Dewers, Thomas D.; Jove Colon, Carlos F.; Fuller, Timothy J.; Mohahgheghi, Joseph; Stormont, J.C.; Taha, Mahmoud R.; Pyrak-Nolte, Laura; Wang, Chaoyi; Douba, A.; Genedy, Moneeb; Fernandez, Serafin G.; Kandil, U.F.; Soliman, E.E.; Starr, J.; Stenko, Mike

The failure of subsurface seals (i.e., wellbores, shaft and drift seals in a deep geologic nuclear waste repository) has important implications for US Energy Security. The performance of these cementitious seals is controlled by a combination of chemical and mechanical forces, which are coupled processes that occur over multiple length scales. The goal of this work is to improve fundamental understanding of cement-geomaterial interfaces and develop tools and methodologies to characterize and predict performance of subsurface seals. This project utilized a combined experimental and modeling approach to better understand failure at cement-geomaterial interfaces. Cutting-edge experimental methods and characterization methods were used to understand evolution of the material properties during chemo-mechanical alteration of cement-geomaterial interfaces. Software tools were developed to model chemo-mechanical coupling and predict the complex interplay between reactive transport and solid mechanics. Novel, fit-for-purpose materials were developed and tested using fundamental understanding of failure processes at cement-geomaterial interfaces.