Publications

Publications / Journal Article

General modeling framework for quantum photodetectors

Leonard, Francois L.; Young, Steve M.; Sarovar, Mohan S.

Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. In conclusion, the framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.