Publications / SAND Report

Data driven learning of robust nonlocal models

D'Elia, Marta D.; Silling, Stewart A.; You, Huaiqian Y.; Yu, Yue Y.

Nonlocal models use integral operators that embed length-scales in their definition. However, the integrands in these operators are difficult to define from the data that are typically available for a given physical system, such as laboratory mechanical property tests. In contrast, molecular dynamics (MD) does not require these integrands, but it suffers from computational limitations in the length and time scales it can address. To combine the strengths of both methods and to obtain a coarse-grained, homogenized continuum model that efficiently and accurately captures materials' behavior, we propose a learning framework to extract, from MD data, an optimal nonlocal model as a surrogate for MD displacements. Our framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training. The efficacy of this approach is demonstrated with several numerical tests for single layer graphene both in the case of perfect crystal and in the presence of thermal noise.