# Publications

## Conforming quadrilaterals meshes on the cubed sphere

The cubed sphere geometry, obtained by inscribing a cube in a sphere and mapping points between the two surfaces using a gnomonic (central) projection, is commonly used in atmospheric models because it is free of polar singularities and is well-suited for parallel computing. Global meshes on the cubed-sphere typically project uniform (square) grids from each face of the cube onto the sphere, and if refinement is desired then it is done with non-conforming meshes - overlaying the area of interest with a finer uniform mesh, which introduces so-called hanging nodes on edges along the boundary of the fine resolution area. An alternate technique is to tile each face of the cube with quadrilaterals without requiring the quads to be rectangular. These meshes allow for refinement in areas of interest with a conforming mesh, providing a smoother transition between high and low resolution portions of the grid than non-conforming refinement. The conforming meshes are demonstrated in HOMME, NCAR's High Order Method Modeling Environment, where two modifications have been made: the dependence on uniform meshes has been removed, and the ability to read arbitrary quadrilateral meshes from a previously-generated file has been added. Numerical results come from a conservative spectral element method modeling a selection of the standard shallow water test cases.