Jennifer Ann Loe

Scalable Algorithms

Author profile picture

Scalable Algorithms

jloe@sandia.gov

(505) 844-8137

Sandia National Laboratories, New Mexico
P.O. Box 5800
Albuquerque, NM 87185-1327

Biography

Jennifer Loe is a Senior Member of Technical Staff at Sandia National Laboratories.  She completed her Ph.D. in mathematics at Baylor University in December 2019.  In January 2020, she became a postdoc in the Scalable Algorithms department at Sandia and converted to full staff in February 2022.  Jennifer primarily works in numerical linear algebra, with a focus on Krylov solvers for sparse linear systems.  She is a developer of the Belos package for iterative linear solvers in Trilinos and has also contributed to Kokkos Kernels.  Her research interests include GMRES, polynomial preconditioning, communication-avoiding solvers, and mixed-pecision solvers. When not at work, she enjoys visiting the zoo and aquarium, speaking in Toastmasters, and volunteering for Big Brothers, Big Sisters.

Education

  • Ph.D. Mathematics, Baylor University, 2020
    • Advisor: Ron Morgan
    • Thesis: Polynomial Preconditioning with the Minimum Residual Polynomial
  • M.S. Mathematics, Baylor University, 2018
  • B.S. Mathematics, Oklahoma Christian University, 2014
    • Minors: Computer Science and International Studies

Publications

Jennifer Ann Loe, (2022). Linear Algebra and Computing: Behind the Scenes MARTIANS Intern Seminar (Sandia) Document ID: 1585274

Jennifer Ann Loe, Heliezer Jose David Espinoza, Erik Gunnar Boman, (2022). Randomized Spectral Graph Partitioning SIAM Annual Meeting Document ID: 1573672

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2022). Mixed Precision Strategies for GMRES in TrilinosJennifer CIS Research Foundation External Review Document ID: 1551279

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, Ronald Morgan, (2022). Polynomial Preconditioning GMRES with Mixed Precisions Preconditioning 2022 Document ID: 1540759

Jennifer Ann Loe, Ronald Morgan, Mark Embree, Erik Gunnar Boman, Heidi K. Thornquist, (2022). Polynomial Preconditioning with the GMRES Polynomial Householder Symposium 2022 Document ID: 1540149

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2022). Polynomial Preconditioning GMRES with Mixed Precisions Preconditioning 2022 Document ID: 1540150

Luc Berger-Vergiat, Sivasankaran Rajamanickam, Jennifer Ann Loe, Brian Michael Kelley, Evan Charles Harvey, James G. Foucar, Nathan David Ellingwood, Vinh Quang Dang, Kim Anne J. Liegeois, Carl William Pearson, (2022). Kokkos Kernels Math Library ECP Annual Meeting Document ID: 1517664

Luc Berger-Vergiat, Sivasankaran Rajamanickam, Vinh Quang Dang, Brian Michael Kelley, Nathan David Ellingwood, Jennifer Ann Loe, Evan Charles Harvey, Carl William Pearson, James G. Foucar, Kim Anne J. Liegeois, (2022). Kokkos Kernels (Sake project) ECP Annual Meeting Document ID: 1516157

Jennifer Ann Loe, Hartwig Anzt, (2022). xSDK Focus Effort Developing Multiprecision Numerics ECP Annual Meeting Document ID: 1505528

Jennifer Ann Loe, (2022). Polynomial Preconditioning with the GMRES Polynomial Householder Symposium 2022 Document ID: 1482195

Jennifer Ann Loe, (2022). Paving a Path for Polynomial Preconditioning in Parallel Computing Computational Mathematics and Applications series Document ID: 1470617

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2022). Mixed Precision Strategies for GMRES SIAM Parallel Processing 2022 Document ID: 1470695

Heliezer Jose David Espinoza, Jennifer Ann Loe, Erik Gunnar Boman, (2022). Randomized Cholesky Preconditioning for Graph Partitioning Applications https://www.osti.gov/search/identifier:1843910 Document ID: 1448900

Heliezer Jose David Espinoza, Jennifer Ann Loe, Erik Gunnar Boman, (2022). Randomized Cholesky Preconditioning for Graph PartitioningApplications https://www.osti.gov/search/identifier:1840649 Document ID: 1406029

Jennifer Ann Loe, Ronald B Morgan, (2021). Toward Efficient Polynomial Preconditioning for GMRES Numerical Linear Algebra with Applications https://www.osti.gov/search/identifier:1838187 Document ID: 1405861

Jennifer Ann Loe, (2021). Mixed Precision Krlyov Slide for ECP Review ECP Review Document ID: 1404537

Jennifer Ann Loe, (2021). Mixed Precision Krlyov Slide for ECP Review ECP Review Document ID: 1404242

Jennifer Ann Loe, Sivasankaran Rajamanickam, (2021). Mixed Precision in Trilinos Trilinos User Group Meeting Document ID: 1403996

Jennifer Ann Loe, (2021). Five Thoughts for Future Interns CRLC Webinar- Sustainable Horizons Institute Document ID: 1392438

Jennifer Ann Loe, (2021). An Introduction to Trilinos CSRI 2021 Intern Summer Series Document ID: 1355828

Jennifer Ann Loe, (2021). Using Multiple Precisions in the GMRES Linear Solver Bay Area Research SLAM Lightning Talk Dry Run Document ID: 1355877

Ahmad Abdelfattah, Hartwig Anzt, Alan Ayala, Erik Gunnar Boman, Erin Carson, Sebastien Cayrols, Terry Cojean, Jack Dongarra, Rob Falgout, Mark Gates, Thomas Gr\"{u}tzmacher, Nicholas J. Higham, Scott E. Kruger, Sherry Li, Neil Lindquist, Yang Liu, Jennifer Ann Loe, Pratik Nayak, Daniel Osei-Kuffuor, Sri Pranesh, Sivasankaran Rajamanickam, Tobias Ribizel, Bryce Barry Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire Tomov, Yaohung M. Tsai, Ichitaro Yamazaki, Urike Meier Yang, (2021). Advances in Mixed Precision Algorithms: 2021 Edition https://www.osti.gov/search/identifier:1814447 Document ID: 1355052

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2021). Properties of GMRES with Iterative Refinement on GPUs PASC 21 Conference Document ID: 1330596

Jennifer Ann Loe, Erik Gunnar Boman, (2021). Polynomial Preconditioned GMRES for GPU Computing SIAM Conference on Applied Linear Algebra https://www.osti.gov/search/identifier:1870091 Document ID: 1307465

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2021). Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs ASHES Workshop for IPDPS 2021 https://www.osti.gov/search/identifier:1869548 Document ID: 1307095

Jennifer Ann Loe, (2021). Incorporating Multiple Compute Precisions into the GMRES Linear Solver University of Pittsburgh AWM Meeting https://www.osti.gov/search/identifier:1866721 Document ID: 1305641

Jennifer Ann Loe, Erik Gunnar Boman, (2021). Polynomial Preconditioning in Trilinos ECP Annual Meeting https://www.osti.gov/search/identifier:1863700 Document ID: 1294037

Erik Gunnar Boman, Daniel Robert William Bielich, Jennifer Ann Loe, Ichitaro Yamazaki, (2021). PEEKS Overview ECP Annual Meeting https://www.osti.gov/search/identifier:1863514 Document ID: 1294052

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2021). Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs The Eleventh International Workshop on Accelerators and Hybrid Emerging Systems (AsHES) [in conjunction with IPDPS] https://www.osti.gov/search/identifier:1861264 Document ID: 1292630

Hartwig Anzt, Jennifer Ann Loe, Sivasankaran Rajamanickam, (2021). xSDK Focus Effort Developing Multiprecision Numerics ECP Annual Meeting https://www.osti.gov/search/identifier:1856293 Document ID: 1281583

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2021). Multiprecision Krylov Solvers in Kokkos and Belos SIAM Conference on Computational Science and Engineering 2021 https://www.osti.gov/search/identifier:1854310 Document ID: 1280150

Hartwig Antz, Erik Gunnar Boman, Mark Gates, Scott Kruger, Sherry Li, Jennifer Ann Loe, Daniel Osei-Kuffuor, Stan Tomov, Yaohung M Tsai, Ulrike Meier Yang, (2020). Towards Use of Mixed Precision in ECP Math Libraries https://www.osti.gov/search/identifier:1735694 Document ID: 1243437

Jennifer Ann Loe, Sivasankaran Rajamanickam, Erik Gunnar Boman, Hartwig Anzt, (2020). ECP Multiprecision Project Review Slides ECP Multiprecision Project Review https://www.osti.gov/search/identifier:1835661 Document ID: 1243787

Jennifer Ann Loe, Christian Alexander Glusa, Ichitaro Yamazaki, Erik Gunnar Boman, Sivasankaran Rajamanickam, (2020). Mixed-Precision GMRES in Trilinos Sandia Postdoctoral Technical Showcase https://www.osti.gov/search/identifier:1833786 Document ID: 1243146

Jennifer Ann Loe, Christian Alexander Glusa, Erik Gunnar Boman, Ichitaro Yamazaki, Sivasankaran Rajamanickam, (2020). Multiprecision GMRES in Trilinos packages Belos and Kokkos Sparse Days https://www.osti.gov/search/identifier:1832692 Document ID: 1232487

Jennifer Ann Loe, (2020). Linear Solvers and Computing: Behind the Scenes Linear Algebra Class https://www.osti.gov/search/identifier:1831351 Document ID: 1231886

Jennifer Ann Loe, Christian Alexander Glusa, Erik Gunnar Boman, Ichitaro Yamazaki, Sivasankaran Rajamanickam, (2020). Multiprecision Krylov Solvers in Trilinos Bi-Weekly ECP Multiprecision Project Update Meeting https://www.osti.gov/search/identifier:1829961 Document ID: 1231392

Jennifer Ann Loe, (2020). Jennifer Loe – Rising Stars Presentation Rising Stars https://www.osti.gov/search/identifier:1826444 Document ID: 1209329

Mark Embree, Jennifer Ann Loe, Ronald B. Morgan, (2020). Polynomial Preconditioned Arnoldi with Stability Control SIAM Journal on Scientific Computing https://www.osti.gov/search/identifier:1760458 Document ID: 1208004

Jennifer Ann Loe, Heidi K. Thornquist, Erik Gunnar Boman, (2020). Polynomial Preconditioned GMRES in Trilinos: Practical Considerations for High Performance Computing SIAM Parallel Processing 2020 https://www.osti.gov/search/identifier:1765637 Document ID: 1091883

Jennifer Ann Loe, Heidi K. Thornquist, Erik Gunnar Boman, (2019). Polynomial Preconditioning for Avoiding Communication in GMRES Preconditioning 2019 https://www.osti.gov/search/identifier:1641026 Document ID: 984898

Showing Results. Show More Publications

Software

Trilinos