Daniel Thomas Seidl
Scientific Machine Learning

Scientific Machine Learning
(505) 284-8679
Sandia National Laboratories, New Mexico
P.O. Box 5800
Albuquerque, NM 87185-1326
Biography
Tom has been at Sandia National Labs since January 2016. He develops computational methods in the areas of PDE-constrained optimization, finite elements, and uncertainty quantification.
Education
- Ph.D. Mechanical Engineering, Boston University, August 2015
- M.S. Mechanical Engineering, Boston University, May 2012
- B.S. University of Rochester, Biomedical Engineering, May 2010
Publications
-
Jakeman, J., Eldred, M., Geraci, G., Seidl, D., Smith, T., Gorodetsky, A., Pham, T., Narayan, A., Zeng, X., Ghanem, R., & Ghanem, R. (2022). Multi-fidelity information fusion and resource allocation. https://doi.org/10.2172/1888363 Publication ID: 80245
-
Eldred, M., Geraci, G., Gorodetsky, A., Jakeman, J., Portone, T., Wildey, T., Rushdi, A.A., Seidl, D., & Seidl, D. (2021). The Dakota Project: Connecting the Pipeline from Uncertainty Quantification R&D to Mission Impact [Presentation]. https://www.osti.gov/biblio/1891078 Publication ID: 76127
-
Mariner, P., Berg, T., Debusschere, B., Eckert, A., Harvey, J., LaForce, T., Leone, R., Mills, M., Nole, M., Park, H., Perry, &., Seidl, D., Swiler, L., Chang, K.W., & Chang, K.W. (2021). GDSA Framework Development and Process Model Integration FY2021. https://doi.org/10.2172/1825056 Publication ID: 76168
-
Seidl, D., Jones, E.M.C., Lester, B., & Lester, B. (2021). Comprehensive Material Characterization and Simultaneous Model Calibration for Improved Computational Simulation Credibility. https://doi.org/10.2172/1820000 Publication ID: 75609
-
Seidl, D., Jakeman, J., & Jakeman, J. (2021). Improving Digital Twins by Learning from a Fleet of Assets [Conference Presenation]. https://doi.org/10.2172/1889023 Publication ID: 75878
-
Seidl, D., Granzow, B.N., & Granzow, B.N. (2021). Calibration of Elastoplastic Constitutive Model Parameters from Full-Field Data with Automatic Differentiation-based Sensitivities [Conference Presenation]. https://doi.org/10.2172/1884132 Publication ID: 79534
-
Menhorn, F., Geraci, G., Seidl, D., Eldred, M., King, R., Bungartz, H., Marzouk, Y., & Marzouk, Y. (2021). Multilevel Estimators for Measures of Robustness in Optimization under Uncertainty [Conference Presenation]. https://doi.org/10.2172/1881729 Publication ID: 79510
-
Jakeman, J., Eldred, M., Geraci, G., Portone, T., Rushdi, A.A., Seidl, D., Smith, T., & Smith, T. (2021). Multi-fidelity Machine Learning [Conference Presenation]. https://doi.org/10.2172/1876608 Publication ID: 79162
-
Hsieh, A.S., Maniaci, D., Geraci, G., Seidl, D., Herges, T.G., Brown, K., Cutler, J., & Cutler, J. (2021). Application of Multifidelity Uncertainty Quantification Towards Multi-turbine Interaction and Wake Characterization [Conference Presenation]. https://doi.org/10.2172/1870979 Publication ID: 78674
-
Berg, T., Mariner, P., Debusschere, B., Seidl, D., Leone, R., Chang, K.W., & Chang, K.W. (2021). Machine Learning Surrogates for the Fuel Matrix Degradation Model [Presentation]. https://www.osti.gov/biblio/1869760 Publication ID: 78570
-
Berg, T., Chang, K.W., Leone, R., Seidl, D., Mariner, P., Debusschere, B., & Debusschere, B. (2021). Surrogate Modeling of Spent Fuel Degradation for Repository Performance Assessment [Conference Presenation]. https://doi.org/10.2172/1854307 Publication ID: 77449
-
Menhorn, F., Geraci, G., Seidl, D., Eldred, M., King, R., Bungartz, H., Marzouk, Y., & Marzouk, Y. (2021). Multifidelity Monte Carlo Estimators for Robust Formulations in Optimization under Uncertainty [Conference Presenation]. https://doi.org/10.2172/1847580 Publication ID: 77379
-
Fayad, S., Jones, E.M.C., Reu, P.L., Seidl, D., Lambros, J., & Lambros, J. (2021). Sensitivity-Based Simultaneous Experimentation and Calibration of Complex Elasto-Plastic Models [Conference Proceeding]. https://www.osti.gov/biblio/1847583 Publication ID: 77258
-
Menhorn, F., Geraci, G., Seidl, D., Eldred, M., King, R., Bungartz, H., Marzouk, Y., & Marzouk, Y. (2020). Multifidelity strategies for optimization under uncertainty of wind power plants [Conference Presenation]. https://doi.org/10.2172/1836901 Publication ID: 72258
-
Seidl, D., Granzow, B.N., & Granzow, B.N. (2020). Elastoplastic Constitutive Model Calibration with Automatic Differentiation-based Sensitivities [Conference Presenation]. https://doi.org/10.2172/1830965 Publication ID: 71066
-
Maniaci, D., Hsieh, A.S., Geraci, G., Seidl, D., Herges, T., Eldred, M., Blaylo, M., Houchens, B., & Houchens, B. (2020). Verification Validation and Uncertainty Quantification (V&V/UQ) of Wind Plant Models Project Overview of FY20 Q2 Milestone Completion: Wind Uncertainty Quantification Session and Publications [Presentation]. https://www.osti.gov/biblio/1778659 Publication ID: 73286
-
Mariner, P., Debusschere, B., Hammond, G., Seidl, D., laura, S., Vo , J., & Vo , J. (2020). Surrogate Modeling of Spatially Heterogeneous Source Terms for Probabilistic Assessment of Repository Performance [Conference Poster]. https://www.osti.gov/biblio/1763614 Publication ID: 70908
-
Hsieh, A.S., Maniaci, D., Herges, T.G., Geraci, G., Seidl, D., Eldred, M., Blaylock, M.L., Houchens, B., & Houchens, B. (2020). Multilevel Uncertainty Quantification Using CFD and OpenFAST Simulations of the SWiFT Facility [Conference Poster]. https://doi.org/10.2514/6.2020-1949 Publication ID: 70698
-
Friedrich, M., Geraci, G., Seidl, D., Eldred, M., Ryan, K., Hans-Joachim, B., Youssef, M., & Youssef, M. (2019). Higher moment multilevel estimators for optimization under uncertainty applied to wind plant design [Conference Poster]. https://www.osti.gov/biblio/1643359 Publication ID: 66951
-
Mariner, P., Connolly, L., Cunningham, L., Debusschere, B., Dobson, D., Frederick, J., Hammond, G., Jordan, S., LaForce, T., Nole, M., Park, H., Perry, F., Rogers, R., Seidl, D., Sevougian, S., Stein, E., Swift, P., Swiler, L., Vo, J., Wallace, M., & Wallace, M. (2019). Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010. https://doi.org/10.2172/1570094 Publication ID: 65476
-
Fayad, S., Seidl, D., Reu, P.L., & Reu, P.L. (2019). Minimizing Pattern Induced Bias in Digital Image Correlation [Conference Poster]. https://www.osti.gov/biblio/1642830 Publication ID: 65655
-
Mariner, P., Debusschere, B., Jerden, J., Seidl, D., Swiler, L., Vo, J., & Vo, J. (2019). Lessons Learned in the Development of Source Term Surrogate Models for Repository Performance Assessment [Conference Poster]. https://www.osti.gov/biblio/1643084 Publication ID: 66069
-
Eldred, M., Geraci, G., Seidl, D., Menhorn, F., King, R., Herges, T.G., Hsieh, A.S., Maniaci, D., & Maniaci, D. (2019). Milestone: Develop multilevel emulator-based Bayesian inference capabilities and demonstrate data assimilation for SWiFT configuration [Presentation]. https://www.osti.gov/biblio/1646013 Publication ID: 65367
-
Fayad, S., Reu, P.L., Seidl, D., & Seidl, D. (2019). Pattern Induced Bias in Digital Image Correlation [Conference Poster]. https://www.osti.gov/biblio/1640639 Publication ID: 68924
-
Mariner, P., Swiler, L., Seidl, D., Vo, J., & Vo, J. (2019). Lessons Learned in the Development of Source Term Surrogate Models for Repository Performance Assessment [Conference Poster]. https://www.osti.gov/biblio/1640670 Publication ID: 69032
-
Mariner, P., Seidl, D., Swiler, L., Debusschere, B., Vo, J., Jerden, J., Frederick, J., & Frederick, J. (2019). Surrogate Modeling of Fuel Dissolution [Presentation]. https://www.osti.gov/biblio/1648825 Publication ID: 68682
-
Mariner, P., Swiler, L., Seidl, D., Debusschere, B., Vo, J., Frederick, J., & Frederick, J. (2019). High Fidelity Surrogate Modeling of Fuel Dissolution for Probabilistic Assessment of Repository Performance [Conference Poster]. https://www.osti.gov/biblio/1639277 Publication ID: 67301
-
Mariner, P., Swiler, L., Seidl, D., Debusschere, B., Vo, J., Frederick, J., & Frederick, J. (2019). High Fidelity Surrogate Modeling of Fuel Dissolution for Probabilistic Assessment of Repository Performance [Conference Poster]. https://www.osti.gov/biblio/1602117 Publication ID: 67105
-
Mariner, P., Swiler, L.P., Seidl, D., Debusschere, B.J., Vo, J., Frederick, J., Jerden, J.L., & Jerden, J.L. (2019). High fidelity surrogate modeling of fuel dissolution for probabilistic assessment of repository performance [Conference Poster]. International High-Level Radioactive Waste Management 2019, IHLRWM 2019. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85067129626&origin=inward Publication ID: 64431
-
Roach, R.A., Argibay, N., Allen, K., Balch, D., Beghini, L., Bishop, J., Boyce, B., Brown, J., Burchard, R., Chandross, M., Cook, A., DiAntonio, C., Dressler, A., Forrest, E.C., Ford, K.R., Ivanoff, T., Jared, B.H., Johnson, K., Kammler, D., … Trembacki, B.L. (2018). Born Qualified Grand Challenge LDRD Final Report. https://doi.org/10.2172/1481619 Publication ID: 59393
-
Granzow, B.N., Seidl, D., & Seidl, D. (2018). Adjoint-based Calibration of Plasticity Model Parameters from Digital Image Correlation Data. https://doi.org/10.2172/1474264 Publication ID: 59095
-
Jones, E.M.C., Carroll, J.D., Karlson, K., Kramer, S., Lehoucq, R., Reu, P.L., Seidl, D., Turner, D., & Turner, D. (2018). High-throughput Material Characterization using the Virtual Fields Method. https://doi.org/10.2172/1474817 Publication ID: 59110
-
Wildey, T., Butler, T., Jakeman, J., Seidl, D., van Bloemen Waanders, B., & van Bloemen Waanders, B. (2018). Data-informed Multiscale Modeling of Additive Materials [Conference Poster]. https://www.osti.gov/biblio/1523778 Publication ID: 62297
-
Seidl, D., van Bloemen Waanders, B., Wildey, T., & Wildey, T. (2018). Multiscale Interfaces for Large Scale Optimization [Conference Poster]. https://www.osti.gov/biblio/1525680 Publication ID: 61583
-
Seidl, D., Turner, D., Jones, E.M.C., Karlson, K., Reu, P.L., & Reu, P.L. (2018). Optimal Mechanical Testing for Constitutive Parameter Identification [Conference Poster]. https://www.osti.gov/biblio/1498447 Publication ID: 60905
-
Roach, R.A., Jared, B.H., Cook, A., Keicher, D., van Bloemen Waanders, B., Swiler, L., Seidl, D., Wildey, T., Whetten, S., & Whetten, S. (2018). Born Qualified EAB Telecon [Presentation]. https://www.osti.gov/biblio/1514821 Publication ID: 60282
-
Wildey, T., van Bloemen Waanders, B., Seidl, D., & Seidl, D. (2017). Adaptive Multiscale Modeling Using Generalized Mortar Methods [Conference Poster]. https://www.osti.gov/biblio/1513505 Publication ID: 57313
-
Wildey, T., van Bloemen Waanders, B., Seidl, D., & Seidl, D. (2017). Multiscale Modeling Using Mortar Methods [Conference Poster]. https://www.osti.gov/biblio/1458195 Publication ID: 56724
-
Seidl, D., van Bloemen Waanders, B., Wildey, T., & Wildey, T. (2017). Multiscale Interfaces for Large Scale Optimization [Conference Poster]. https://www.osti.gov/biblio/1456522 Publication ID: 55715
-
van Bloemen Waanders, B., Wildey, T., Seidl, D., Li, H., & Li, H. (2017). Multiscale optimization under uncertainty for additive manufacturing [Conference Poster]. https://www.osti.gov/biblio/1426379 Publication ID: 55236
-
van Bloemen Waanders, B., Wildey, T., Seidl, D., Li, H., & Li, H. (2017). Multiscale optimization under uncertainty [Presentation]. https://www.osti.gov/biblio/1458249 Publication ID: 55002
-
Seidl, D., van Bloemen Waanders, B., Wildey, T., & Wildey, T. (2017). Simultaneous Estimation of Material Parameters and Neumann Boundary Conditions in a Linear Elastic Model by PDE-Constrained Optimization [Conference Poster]. https://www.osti.gov/biblio/1458297 Publication ID: 54920
-
Wildey, T., van Bloemen Waanders, B., Seidl, D., & Seidl, D. (2016). Uncertainty Quantification for Multiscale Mortar Methods [Conference Poster]. https://www.osti.gov/biblio/1368791 Publication ID: 50172
-
Wildey, T., van Bloemen Waanders, B., Seidl, D., Arbogast, T., Ganis, B., Girault, V., Pencheva, G., Wheeler, M., Xue, G., Yotov, I., Tavener, S., Vohralik, M., & Vohralik, M. (2016). Multiscale Mortar Methods: Theory Applications and Future Directions [Conference Poster]. https://www.osti.gov/biblio/1365248 Publication ID: 49573
-
van Bloemen Waanders, B., Wildey, T., Seidl, D., Li, H., & Li, H. (2016). Multiscale Optimization Under Uncertainty [Conference Poster]. https://www.osti.gov/biblio/1348106 Publication ID: 48990