Publications

Results 26–40 of 40
Skip to search filters

Graph-Based Similarity Metrics for Comparing Simulation Model Causal Structures

Naugle, Asmeret B.; Swiler, Laura P.; Lakkaraju, Kiran L.; Verzi, Stephen J.; Warrender, Christina E.; Romero, Vicente J.

The causal structure of a simulation is a major determinant of both its character and behavior, yet most methods we use to compare simulations focus only on simulation outputs. We introduce a method that combines graphical representation with information theoretic metrics to quantitatively compare the causal structures of models. The method applies to agent-based simulations as well as system dynamics models and facilitates comparison within and between types. Comparing models based on their causal structures can illuminate differences in assumptions made by the models, allowing modelers to (1) better situate their models in the context of existing work, including highlighting novelty, (2) explicitly compare conceptual theory and assumptions to simulated theory and assumptions, and (3) investigate potential causal drivers of divergent behavior between models. We demonstrate the method by comparing two epidemiology models at different levels of aggregation.

More Details

Initial evaluation of Centroidal Voronoi Tessellation method for statistical sampling and function integration

Romero, Vicente J.; Romero, Vicente J.; Gunzburger, Max D.

A recently developed Centroidal Voronoi Tessellation (CVT) unstructured sampling method is investigated here to assess its suitability for use in statistical sampling and function integration. CVT efficiently generates a highly uniform distribution of sample points over arbitrarily shaped M-Dimensional parameter spaces. It has recently been shown on several 2-D test problems to provide superior point distributions for generating locally conforming response surfaces. In this paper, its performance as a statistical sampling and function integration method is compared to that of Latin-Hypercube Sampling (LHS) and Simple Random Sampling (SRS) Monte Carlo methods, and Halton and Hammersley quasi-Monte-Carlo sequence methods. Specifically, sampling efficiencies are compared for function integration and for resolving various statistics of response in a 2-D test problem. It is found that on balance CVT performs best of all these sampling methods on our test problems.

More Details

POF-Darts: Geometric adaptive sampling for probability of failure

Reliability Engineering and System Safety

Ebeida, Mohamed S.; Mitchell, Scott A.; Swiler, Laura P.; Romero, Vicente J.; Rushdi, Ahmad A.

We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink, improving the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating the number and locations of disconnected failure regions, not just the POF value. We present various examples to demonstrate the efficiency of our novel approach.

More Details

Simple effective conservative treatment of uncertainty from sparse samples of random functions

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part B. Mechanical Engineering

Romero, Vicente J.; Schroeder, Benjamin B.; Dempsey, James F.; Lewis, John R.; Breivik, Nicole L.; Orient, George E.; Antoun, Bonnie R.; Winokur, Justin W.; Glickman, Matthew R.; Red-Horse, John R.

This paper examines the variability of predicted responses when multiple stress-strain curves (reflecting variability from replicate material tests) are propagated through a finite element model of a ductile steel can being slowly crushed. Over 140 response quantities of interest (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity’s behavior varies according to the particular stress-strain curves used for the materials in the model. We desire to estimate response variability when only a few stress-strain curve samples are available from material testing. Propagation of just a few samples will usually result in significantly underestimated response uncertainty relative to propagation of a much larger population that adequately samples the presiding random-function source. A simple classical statistical method, Tolerance Intervals, is tested for effectively treating sparse stress-strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-standard response distributions in the can-crush problem. The results and discussion in this paper support a proposition that the method will apply similarly well for other sparsely sampled random variable or function data, whether from experiments or models. Finally, the simple Tolerance Interval method is also demonstrated to be very economical.

More Details

What can simulation test beds teach us about social science? Results of the ground truth program

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Krofcheck, Daniel J.; Warrender, Christina E.; Lakkaraju, Kiran L.; Swiler, Laura P.; Verzi, Stephen J.; Emery, Ben; Murdock, Jaimie; Bernard, Michael L.; Romero, Vicente J.

The ground truth program used simulations as test beds for social science research methods. The simulations had known ground truth and were capable of producing large amounts of data. This allowed research teams to run experiments and ask questions of these simulations similar to social scientists studying real-world systems, and enabled robust evaluation of their causal inference, prediction, and prescription capabilities. We tested three hypotheses about research effectiveness using data from the ground truth program, specifically looking at the influence of complexity, causal understanding, and data collection on performance. We found some evidence that system complexity and causal understanding influenced research performance, but no evidence that data availability contributed. The ground truth program may be the first robust coupling of simulation test beds with an experimental framework capable of teasing out factors that determine the success of social science research.

More Details
Results 26–40 of 40
Results 26–40 of 40