Publications

Results 51–75 of 75
Skip to search filters

On the Development of the Large Eddy Simulation Approach for Modeling Turbulent Flow: LDRD Final Report

Schmidt, Rodney C.; DesJardin, Paul E.; Voth, Thomas E.; Christon, Mark A.; Kerstein, Alan R.; Wunsch, Scott E.

This report describes research and development of the large eddy simulation (LES) turbulence modeling approach conducted as part of Sandia's laboratory directed research and development (LDRD) program. The emphasis of the work described here has been toward developing the capability to perform accurate and computationally affordable LES calculations of engineering problems using unstructured-grid codes, in wall-bounded geometries and for problems with coupled physics. Specific contributions documented here include (1) the implementation and testing of LES models in Sandia codes, including tests of a new conserved scalar--laminar flamelet SGS combustion model that does not assume statistical independence between the mixture fraction and the scalar dissipation rate, (2) the development and testing of statistical analysis and visualization utility software developed for Exodus II unstructured grid LES, and (3) the development and testing of a novel new LES near-wall subgrid model based on the one-dimensional Turbulence (ODT) model.

More Details

Semi-infinite target penetration by ogive-nose penetrators: ALEGRA/SHISM code predictions for ideal and non-ideal impacts

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Bishop, Joseph E.; Voth, Thomas E.; Brown, Kevin H.

The physics of ballistic penetration mechanics is of great interest in penetrator and counter-measure design. The phenomenology associated with these events can be quite complex and a significant number of studies have been conducted ranging from purely experimental to 'engineering' models based on empirical and/or analytical descriptions to fully-coupled penetrator/target, thermo-mechanical numerical simulations. Until recently, however, there appears to be a paucity of numerical studies considering 'non-ideal' impacts [1]. The goal of this work is to demonstrate the SHISM algorithm implemented in the ALEGRA Multi-Material ALE (Arbitrary Lagrangian Eulerian) code [13]. The SHISM algorithm models the three-dimensional continuum solid mechanics response of the target and penetrator in a fully coupled manner. This capability allows for the study of 'non-ideal' impacts (e.g. pitch, yaw and/or obliquity of the target/penetrator pair). In this work predictions using the SHISM algorithm are compared to previously published experimental results for selected ideal and non-ideal impacts of metal penetrator-target pairs. These results show good agreement between predicted and measured maximum depth-of-penetration, DOP, for ogive-nose penetrators with striking velocities in the 0.5 to 1.5 km/s range. Ideal impact simulations demonstrate convergence in predicted DOP for the velocity range considered. A theory is advanced to explain disagreement between predicted and measured DOP at higher striking velocities. This theory postulates uncertainties in angle-of-attack for the observed discrepancies. It is noted that material models and associated parameters used here, were unmodified from those in the literature. Hence, no tuning of models was performed to match experimental data. Copyright © 2005 by ASME.

More Details

Titanium cholla : lightweight, high-strength structures for aerospace applications

Gill, David D.; Atwood, Clinton J.; Robbins, Joshua R.; Voth, Thomas E.

Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

More Details

Topology Optimization of Cellular Structure

Robbins, Joshua R.; Owen, Steven J.; Clark, Brett W.; Voth, Thomas E.

This paper presents an end-to-end design process for compliance minimization based topological optimization of cellular structures through to the realization of a final printed product. Homogenization is used to derive properties representative of these structures through direct numerical simulation of unit cell models of the underlying periodic structure. The resulting homogenized properties are then used assuming uniform distribution of the cellular structure to compute the final macro-scale structure. A new method is then presented for generating an STL representation of the final optimized part that is suitable for printing on typical industrial machines. Quite fine cellular structures are shown to be possible using this method as compared to other approaches that use nurb based CAD representations of the geometry. Finally, results are presented that illustrate the fine-scale stresses developed in the final macro-scale optimized part and suggestions are made as to incorporate these features into the overall optimization process.

More Details

Wave propagation and dispersion in elasto-plastic microstructured materials

International Journal of Solids and Structures

Dingreville, Rémi; Robbins, Joshua R.; Voth, Thomas E.

A Mindlin continuum model that incorporates both a dependence upon the microstructure and inelastic (nonlinear) behavior is used to study dispersive effects in elasto-plastic microstructured materials. A one-dimensional equation of motion of such material systems is derived based on a combination of the Mindlin microcontinuum model and a hardening model both at the macroscopic and microscopic level. The dispersion relation of propagating waves is established and compared to the classical linear elastic and gradient-dependent solutions. It is shown that the observed wave dispersion is the result of introducing microstructural effects and material inelasticity. The introduction of an internal characteristic length scale regularizes the ill-posedness of the set of partial differential equations governing the wave propagation. The phase speed does not necessarily become imaginary at the onset of plastic softening, as it is the case in classical continuum models and the dispersive character of such models constrains strain softening regions to localize. © 2014 Elsevier Ltd. All rights reserved.

More Details
Results 51–75 of 75
Results 51–75 of 75