Publications

Results 26–50 of 100
Skip to search filters

Assessing the standard Molybdenum projector augmented wave VASP potentials

Wills, Ann E.

Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing high confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.

More Details

Development of ab initio techniques critical for future science-based explosives R&D

Wixom, Ryan R.; Wills, Ann E.

Density Functional Theory (DFT) has emerged as an indispensable tool in materials research, since it can accurately predict properties of a wide variety of materials at both equilibrium and extreme conditions. However, for organic molecular crystal explosives, successful application of DFT has largely failed due to the inability of current exchange-correlation functionals to correctly describe intermolecular van der Waals (vdWs) forces. Despite this, we have discovered that even with no treatment of vdWs bonding, the AM05 functional and DFT based molecular dynamics (MD) could be used to study the properties of molecular crystals under compression. We have used DFT-MD to predict the unreacted Hugoniots for PETN and HNS and validated the results by comparison with crystalline and porous experimental data. Since we are also interested in applying DFT methods to study the equilibrium volume properties of explosives, we studied the nature of the vdWs bonding in pursuit of creating a new DFT functional capable of accurately describing equilibrium bonding of molecular crystals. In this report we discuss our results for computing shock Hugoniots of molecular crystals and also what was learned about the nature of bonding in these materials.

More Details

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon P.; Drake, Richard R.; Weirs, Vincent G.; Adams, Brian M.; Vigil, Dena V.; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua R.; Siefert, Christopher S.; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James R.; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle C.; Desjarlais, Michael P.; Love, Edward L.; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.

Abstract not provided.

Results 26–50 of 100
Results 26–50 of 100