Publications

Results 151–158 of 158
Skip to search filters

Water quality sensor placement in water networks with budget constraints

Berry, Jonathan W.; Hart, William E.; Phillips, Cynthia A.

In recent years, several integer programming models have been proposed to place sensors in municipal water networks in order to detect intentional or accidental contamination. Although these initial models assumed that it is equally costly to place a sensor at any place in the network, there clearly are practical cost constraints that would impact a sensor placement decision. Such constraints include not only labor costs but also the general accessibility of a sensor placement location. In this paper, we extend our integer program to explicitly model the cost of sensor placement. We partition network locations into groups of varying placement cost, and we consider the public health impacts of contamination events under varying budget constraints. Thus our models permit cost/benefit analyses for differing sensor placement designs. As a control for our optimization experiments, we compare the set of sensor locations selected by the optimization models to a set of manually-selected sensor locations.

More Details

Sensor placement in municipal water networks

Proposed for publication in the Journal of Water Resources Planning and Management.

Hart, William E.; Phillips, Cynthia A.; Berry, Jonathan W.; Watson, Jean-Paul W.

We present a model for optimizing the placement of sensors in municipal water networks to detect maliciously injected contaminants. An optimal sensor configuration minimizes the expected fraction of the population at risk. We formulate this problem as a mixed-integer program, which can be solved with generally available solvers. We find optimal sensor placements for three test networks with synthetic risk and population data. Our experiments illustrate that this formulation can be solved relatively quickly and that the predicted sensor configuration is relatively insensitive to uncertainties in the data used for prediction.

More Details

Communication-aware processor allocation for supercomputers

Leung, Vitus J.; Phillips, Cynthia A.

We give processor-allocation algorithms for grid architectures, where the objective is to select processors from a set of available processors to minimize the average number of communication hops. The associated clustering problem is as follows: Given n points in R{sup d}, find a size-k subset with minimum average pairwise L{sub 1} distance.We present a natural approximation algorithm and show that it is a 7/4-approximation for 2D grids. In d dimensions, the approximation guarantee is 2 - 1/2d, which is tight. We also give a polynomial-time approximation scheme (PTAS) for constant dimension d and report on experimental results.

More Details

Algorithmic support for commodity-based parallel computing systems

Leung, Vitus J.; Leung, Vitus J.; Phillips, Cynthia A.

The Computational Plant or Cplant is a commodity-based distributed-memory supercomputer under development at Sandia National Laboratories. Distributed-memory supercomputers run many parallel programs simultaneously. Users submit their programs to a job queue. When a job is scheduled to run, it is assigned to a set of available processors. Job runtime depends not only on the number of processors but also on the particular set of processors assigned to it. Jobs should be allocated to localized clusters of processors to minimize communication costs and to avoid bandwidth contention caused by overlapping jobs. This report introduces new allocation strategies and performance metrics based on space-filling curves and one dimensional allocation strategies. These algorithms are general and simple. Preliminary simulations and Cplant experiments indicate that both space-filling curves and one-dimensional packing improve processor locality compared to the sorted free list strategy previously used on Cplant. These new allocation strategies are implemented in Release 2.0 of the Cplant System Software that was phased into the Cplant systems at Sandia by May 2002. Experimental results then demonstrated that the average number of communication hops between the processors allocated to a job strongly correlates with the job's completion time. This report also gives processor-allocation algorithms for minimizing the average number of communication hops between the assigned processors for grid architectures. The associated clustering problem is as follows: Given n points in {Re}d, find k points that minimize their average pairwise L{sub 1} distance. Exact and approximate algorithms are given for these optimization problems. One of these algorithms has been implemented on Cplant and will be included in Cplant System Software, Version 2.1, to be released. In more preliminary work, we suggest improvements to the scheduler separate from the allocator.

More Details

Sensor placement in municipal water networks

Hart, William E.; Hart, William E.; Phillips, Cynthia A.

We present a model for optimizing the placement of sensors in municipal water networks to detect maliciously-injected contaminants. An optimal sensor configuration minimizes the expected fraction of the population at risk. We formulate this problem as an integer program, which can be solved with generally available IP solvers. We find optimal sensor placements for three real networks with synthetic risk and population data. Our experiments illustrate that this formulation can be solved relatively quickly, and that the predicted sensor configuration is relatively insensitive to uncertainties in the data used for prediction.

More Details

PICO: An Object-Oriented Framework for Branch and Bound

Hart, William E.; Phillips, Cynthia A.; Phillips, Cynthia A.

This report describes the design of PICO, a C++ framework for implementing general parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the efficient implementation of a wide range of branch-and-bound methods on an equally wide range of parallel computing platforms. We first discuss the basic architecture of PICO, including the application class hierarchy and the package's serial and parallel layers. We next describe the design of the serial layer, and its central notion of manipulating subproblem states. Then, we discuss the design of the parallel layer, which includes flexible processor clustering and communication rates, various load balancing mechanisms, and a non-preemptive task scheduler running on each processor. We describe the application of the package to a branch-and-bound method for mixed integer programming, along with computational results on the ASCI Red massively parallel computer. Finally we describe the application of the branch-and-bound mixed-integer programming code to a resource constrained project scheduling problem for Pantex.

More Details
Results 151–158 of 158
Results 151–158 of 158