Publications

Results 26–39 of 39
Skip to search filters

Final report on LDRD project : coupling strategies for multi-physics applications

Hopkins, Matthew M.; Pawlowski, Roger P.; Moffat, Harry K.; Carnes, Brian C.; Hooper, Russell H.

Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

More Details

Enabling fluid-structural strong thermal coupling within a multi-physics environment

Collection of Technical Papers - 44th AIAA Aerospace Sciences Meeting

Hooper, Russell H.; Smith, Thomas M.; Ober, Curtis C.

We demonstrate use of a Jacobian-Free Newton-Krylov solver to enable strong thermal coupling at the interface between a solid body and an external compressible fluid. Our method requires only information typically used in loose coupling based on successive substitution and is implemented within a multi-physics framework. We present results for two external flows over thermally conducting solid bodies obtained using both loose and strong coupling strategies. Performance of the two strategies is compared to elucidate both advantages and caveats associated with strong coupling.

More Details
Results 26–39 of 39
Results 26–39 of 39