Publications

Results 26–50 of 89
Skip to search filters

Risk-averse optimal control of semilinear elliptic PDEs

ESAIM - Control, Optimisation and Calculus of Variations

Kouri, Drew P.; Surowiec, T.M.

In this paper, we consider the optimal control of semilinear elliptic PDEs with random inputs. These problems are often nonconvex, infinite-dimensional stochastic optimization problems for which we employ risk measures to quantify the implicit uncertainty in the objective function. In contrast to previous works in uncertainty quantification and stochastic optimization, we provide a rigorous mathematical analysis demonstrating higher solution regularity (in stochastic state space), continuity and differentiability of the control-to-state map, and existence, regularity and continuity properties of the control-to-adjoint map. Our proofs make use of existing techniques from PDE-constrained optimization as well as concepts from the theory of measurable multifunctions. We illustrate our theoretical results with two numerical examples motivated by the optimal doping of semiconductor devices.

More Details

Higher-moment buffered probability

Optimization Letters

Kouri, Drew P.

In stochastic optimization, probabilities naturally arise as cost functionals and chance constraints. Unfortunately, these functions are difficult to handle both theoretically and computationally. The buffered probability of failure and its subsequent extensions were developed as numerically tractable, conservative surrogates for probabilistic computations. In this manuscript, we introduce the higher-moment buffered probability. Whereas the buffered probability is defined using the conditional value-at-risk, the higher-moment buffered probability is defined using higher-moment coherent risk measures. In this way, the higher-moment buffered probability encodes information about the magnitude of tail moments, not simply the tail average. We prove that the higher-moment buffered probability is closed, monotonic, quasi-convex and can be computed by solving a smooth one-dimensional convex optimization problem. These properties enable smooth reformulations of both higher-moment buffered probability cost functionals and constraints.

More Details

Spectral risk measures: the risk quadrangle and optimal approximation

Mathematical Programming

Kouri, Drew P.

We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. We prove the consistency of this approximation and demonstrate our results through numerical examples.

More Details

An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk

Computer Methods in Applied Mechanics and Engineering

Zou, Zilong; Kouri, Drew P.; Aquino, Wilkins A.

Many physical systems are modeled using partial differential equations (PDEs) with uncertain or random inputs. For such systems, naively propagating a fixed number of samples of the input probability law (or an approximation thereof) through the PDE is often inadequate to accurately quantify the “risk” associated with critical system responses. In this paper, we develop a goal-oriented, adaptive sampling and local reduced basis approximation for PDEs with random inputs. Our method determines a set of samples and an associated (implicit) Voronoi partition of the parameter domain on which we build local reduced basis approximations of the PDE solution. The samples are selected in an adaptive manner using an a posteriori error indicator. A notable advantage of the proposed approach is that the computational cost of the approximation during the adaptive process remains constant. We provide theoretical error bounds for our approximation and numerically demonstrate the performance of our method when compared to widely used adaptive sparse grid techniques. In addition, we tailor our approach to accurately quantify the risk of quantities of interest that depend on the PDE solution. We demonstrate our method on an advection–diffusion example and a Helmholtz example.

More Details

An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids

SIAM-ASA Journal on Uncertainty Quantification

Zahr, Matthew J.; Carlberg, Kevin T.; Kouri, Drew P.

This work introduces a new method to efficiently solve optimization problems constrained by partial differential equations (PDEs) with uncertain coefficients. The method leverages two sources of inexactness that trade accuracy for speed: (1) stochastic collocation based on dimension-Adaptive sparse grids (SGs), which approximates the stochastic objective function with a limited number of quadrature nodes, and (2) projection-based reduced-order models (ROMs), which generate efficient approximations to PDE solutions. These two sources of inexactness lead to inexact objective function and gradient evaluations, which are managed by a trust-region method that guarantees global convergence by adaptively refining the SG and ROM until a proposed error indicator drops below a tolerance specified by trust-region convergence theory. A key feature of the proposed method is that the error indicator|which accounts for errors incurred by both the SG and ROM|must be only an asymptotic error bound, i.e., a bound that holds up to an arbitrary constant that need not be computed. This enables the method to be applicable to a wide range of problems, including those where sharp, computable error bounds are not available; this distinguishes the proposed method from previous works. Numerical experiments performed on a model problem from optimal ow control under uncertainty verify global convergence of the method and demonstrate the method's ability to outperform previously proposed alternatives.

More Details

Ridge approximation and dimension reduction for an acoustic scattering model

2018 International Applied Computational Electromagnetics Society Symposium in Denver, ACES-Denver 2018

Constantine, Paul G.; Hokanson, Jeffrey M.; Kouri, Drew P.

Problems in uncertainty quantification (UQ) suffer from the curse of dimensionality. One approach to address this issue is to identify and exploit low-dimensional structure in the underlying model. In this paper, we show that low-dimensional active subspaces are not present in a particular model arising from acoustic scattering. This suggests that UQ techniques based on active subspaces are not appropriate for this problem.

More Details

Existence and optimality conditions for risk-averse PDE-constrained optimization

SIAM-ASA Journal on Uncertainty Quantification

Kouri, Drew P.; Surowiec, T.M.

Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. In this work, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Finally, we introduce a new risk measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.

More Details

LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices

Cyr, Eric C.; von Winckel, Gregory J.; Kouri, Drew P.; Gardiner, Thomas A.; Ridzal, Denis R.; Shadid, John N.; Miller, Sean M.

This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.

More Details
Results 26–50 of 89
Results 26–50 of 89