Quantum Transport Simulation and Optimization of Below-6-nm Si FinFETs with HfSiON/SiO2 Gate Dielectrics
Abstract not provided.
Abstract not provided.
Abstract not provided.
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design comparison and optimization.
Journal of Applied Physics
Abstract not provided.
ACM Transaction on Mathematical Software
Abstract not provided.
Journal of Applied Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computational Electronics (IWCE), 2012 15th International Workshop on
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly Si double quantum dots (DQDs) developed for quantum computing. The simulator core includes Poisson, Schrodinger, and Configuration Interaction solvers which can be run individually or combined self-consistently. The simulator is built upon Sandia-developed Trilinos and Albany components, and is interfaced with the Dakota optimization tool. It is being developed for seamless integration, high flexibility and throughput, and is intended to be open source. The QCAD tool has been used to simulate a large number of fabricated silicon DQDs and has provided fast feedback for design comparison and optimization.
Abstract not provided.
Abstract not provided.
Abstract not provided.