Neuromorphic computing, which aims to replicate the computational structure and architecture of the brain in synthetic hardware, has typically focused on artificial intelligence applications. What is less explored is whether such brain-inspired hardware can provide value beyond cognitive tasks. Here we show that the high degree of parallelism and configurability of spiking neuromorphic architectures makes them well suited to implement random walks via discrete-time Markov chains. These random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Using IBM’s TrueNorth and Intel’s Loihi neuromorphic computing platforms, we show that our neuromorphic computing algorithm for generating random walk approximations of diffusion offers advantages in energy-efficient computation compared with conventional approaches. We also show that our neuromorphic computing algorithm can be extended to more sophisticated jump-diffusion processes that are useful in a range of applications, including financial economics, particle physics and machine learning.
Graph algorithms enable myriad large-scale applications including cybersecurity, social network analysis, resource allocation, and routing. The scalability of current graph algorithm implementations on conventional computing architectures are hampered by the demise of Moore’s law. We present a theoretical framework for designing and assessing the performance of graph algorithms executing in networks of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze new spiking algorithms for shortest path and dynamic programming problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation. For fair and rigorous comparison with conventional algorithms and architectures, which is challenging but paramount, we develop new models of data-movement in conventional computing architectures. This allows us to prove polynomial-factor advantages, even when we assume a SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a rigorous asymptotic computational advantage for neuromorphic computing.
Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.
We present a theoretical framework for designing and assessing the performance of algorithms executing in networks consisting of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze neuromorphic graph algorithms, focusing on shortest path problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation, and we develop data-movement lower bounds for conventional algorithms. A fair and rigorous comparison with conventional algorithms and architectures is challenging but paramount. We prove a polynomial-factor advantage even when we assume an SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a provable asymptotic computational advantage for neuromorphic computing.
n this presentation we will discuss recent results on using the SpiNNaker neuromorphic platform (48-chip model) for deep learning neural network inference. We use the Sandia Labs developed Whet stone spiking deep learning library to train deep multi-layer perceptrons and convolutional neural networks suitable for the spiking substrate on the neural hardware architecture. By using the massively parallel nature of SpiNNaker, we are able to achieve, under certain network topologies, substantial network tiling and consequentially impressive inference throughput. Such high-throughput systems may have eventual application in remote sensing applications where large images need to be chipped, scanned, and processed quickly. Additionally, we explore complex topologies that push the limits of the SpiNNaker routing hardware and investigate how that impacts mapping software-implemented networks to on-hardware instantiations.
Recent advances in neuromorphic algorithm development have shown that neural inspired architectures can efficiently solve scientific computing problems including graph decision problems and partial-integro differential equations (PIDEs). The latter requires the generation of a large number of samples from a stochastic process. While the Monte Carlo approximation of the solution of the PIDEs converges with an increasing number of sampled neuromorphic trajectories, the fidelity of samples from a given stochastic process using neuromorphic hardware requires verification. Such an exercise increases our trust in this emerging hardware and works toward unlocking its energy and scaling efficiency for scientific purposes such as synthetic data generation and stochastic simulation. In this paper, we focus our verification efforts on a one-dimensional Ornstein- Uhlenbeck stochastic differential equation. Using a discrete-time Markov chain approximation, we sample trajectories of the stochastic process across a variety of parameters on an Intel 8- Loihi chip Nahuku neuromorphic platform. Using relative entropy as a verification measure, we demonstrate that the random samples generated on Loihi are, in an average sense, acceptable. Finally, we demonstrate how Loihi's fidelity to the distribution changes as a function of the parameters of the Ornstein- Uhlenbeck equation, highlighting a trade-off between the lower-precision random number generation of the neuromorphic platform and our algorithm's ability to represent a discrete-time Markov chain.
Boolean functions and binary arithmetic operations are central to standard computing paradigms. Accordingly, many advances in computing have focused upon how to make these operations more efficient as well as exploring what they can compute. To best leverage the advantages of novel computing paradigms it is important to consider what unique computing approaches they offer. However, for any special-purpose co-processor, Boolean functions and binary arithmetic operations are useful for, among other things, avoiding unnecessary I/O on-and-off the co-processor by pre- and post-processing data on-device. This is especially true for spiking neuromorphic architectures where these basic operations are not fundamental low-level operations. Instead, these functions require specific implementation. Here we discuss the implications of an advantageous streaming binary encoding method as well as a handful of circuits designed to exactly compute elementary Boolean and binary operations.
The widely parallel, spiking neural networks of neuromorphic processors can enable computationally powerful formulations. While recent interest has focused on primarily machine learning tasks, the space of appropriate applications is wide and continually expanding. Here, we leverage the parallel and event-driven structure to solve a steady state heat equation using a random walk method. The random walk can be executed fully within a spiking neural network using stochastic neuron behavior, and we provide results from both IBM TrueNorth and Intel Loihi implementations. Additionally, we position this algorithm as a potential scalable benchmark for neuromorphic systems.
Deep learning networks have become a vital tool for image and data processing tasks for deployed and edge applications. Resource constraints, particularly low power budgets, have motivated methods and devices for efficient on-edge inference. Two promising methods are reduced precision communication networks (e.g. binary activation spiking neural networks) and weight pruning. In this paper, we provide a preliminary exploration for combining these two methods, specifically in-training weight pruning of whetstone networks, to achieve deep networks with both sparse weights and binary activations.