Obtaining Threading Performance Portability in SPARTA using Kokkos
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the result of the LDRD Exploratory Express project 211666-01, titled "Coupled Magnetic Spin Dynamics and Molecular Dynamics in a Massively Parallel Framework" .
Molecular Physics
Simulating energetic materials with complex microstructure is a grand challenge, where until recently, an inherent gap in computational capabilities had existed in modelling grain-scale effects at the microscale. We have enabled a critical capability in modelling the multiscale nature of the energy release and propagation mechanisms in advanced energetic materials by implementing, in the widely used LAMMPS molecular dynamics (MD) package, several novel coarse-graining techniques that also treat chemical reactivity. Our innovative algorithmic developments rooted within the dissipative particle dynamics framework, along with performance optimisations and application of acceleration technologies, have enabled extensions in both the length and time scales far beyond those ever realised by atomistic reactive MD simulations. In this paper, we demonstrate these advances by modelling a shockwave propagating through a microstructured material and comparing performance with the state-of-the-art in atomistic reactive MD techniques. As a result of this work, unparalleled explorations in energetic materials research are now possible.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review E
The role of an external field on capillary waves at the liquid-vapor interface of a dipolar fluid is investigated using molecular dynamics simulations. For fields parallel to the interface, the interfacial width squared increases linearly with respect to the logarithm of the size of the interface across all field strengths tested. The value of the slope decreases with increasing field strength, indicating that the field dampens the capillary waves. With the inclusion of the parallel field, the surface stiffness increases with increasing field strength faster than the surface tension. For fields perpendicular to the interface, the interfacial width squared is linear with respect to the logarithm of the size of the interface for small field strengths, and the surface stiffness is less than the surface tension. Above a critical field strength that decreases as the size of the interface increases, the interface becomes unstable due to the increased amplitude of the capillary waves.
Abstract not provided.
LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used in an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.