Eldred, M., Adams, B.M., Geraci, G., Portone, T., Ridgway, E.M., Stephens, J.A., & Wildey, T. (2022). Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results. 10.2172/1885882
Publications
Search results
Jump to search filtersJakeman, J.D., Eldred, M., Geraci, G., Seidl, D.T., Smith, T.M., Gorodetsky, A.A., Pham, T., Narayan, A., Zeng, X., & Ghanem, R. (2022). Multi-fidelity information fusion and resource allocation. 10.2172/1888363
Jakeman, J.D., Friedman, S., Eldred, M., Tamellini, L., Gorodetsky, A.A., & Allaire, D. (2022). Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems. International Journal for Numerical Methods in Engineering, 123(12), pp. 2760-2790. 10.1002/nme.6958
Najm, H.N., Yang, Y., Zador, J., & Eldred, M. (2021). Surrogate models and physics constraints in atomistic modeling [Conference Presentation]. 10.2172/1903685
Foulk, J.W., Eldred, M., McCann, S., & Wang, Y. (2021). srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier. Journal of Mechanical Design, 144(3). 10.1115/1.4052445
Eldred, M., Geraci, G., Gorodetsky, A.A., Jakeman, J.D., Portone, T., Wildey, T., Rushdi, A., & Seidl, D.T. (2021). The Dakota Project: Connecting the Pipeline from Uncertainty Quantification R&D to Mission Impact [Presentation]. https://www.osti.gov/biblio/1891078
Friedman, S., Jakeman, J.D., Eldred, M., Tamellini, L., Gorodestky, A.A., & Allaire, D. (2021). Adaptive resource allocation for surrogate modeling of systems comprised of multiple disciplines with varying fidelity. 10.2172/1807453
Zeng, X., Geraci, G., Eldred, M., Jakeman, J.D., Gorodetsky, A., & Ghanem, R. (2021). Adaptive Basis for Multifidelity Uncertainty Quantification [Conference Presentation]. 10.2172/1889016
Jakeman, J.D., Eldred, M., Geraci, G., Portone, T., Rushdi, A., Seidl, D.T., & Smith, T.M. (2021). Multi-fidelity Machine Learning [Conference Presentation]. 10.2172/1876608
Eldred, M., Geraci, G., Gorodetsky, A.A., Jakeman, J.D., & Portone, T. (2021). Efficient Deployment of Multifidelity Sampling Methods in Production Settings [Conference Presentation]. 10.2172/1882491
Menhorn, F., Geraci, G., Seidl, D.T., Eldred, M., King, R., Bungartz, H., & Marzouk, Y. (2021). Multilevel Estimators for Measures of Robustness in Optimization under Uncertainty [Conference Presentation]. 10.2172/1881729
Michael, M., Geraci, G., Eldred, M., & Portone, T. (2021). Hybrid multi-level Monte Carlo polynomial chaos method for global sensitivity analysis [Conference Presentation]. 10.2172/1882333
Jakeman, J.D., Friedman, S., Eldred, M., Tamellini, L., Gorodetsky, A., & Allaire, D. (2021). Adaptive resource allocation for surrogate modeling of systems comprised of multiple disciplines with varying fidelity [Conference Presentation]. 10.2172/1872879
Jakeman, J.D., Gorodetsky, A., Eldred, M., Geraci, G., & Smith, T.M. (2021). MFNETS: Multi-Fidelity Data-Driven Networks for Data Analysis [Conference Presentation]. 10.2172/1854429
Eldred, M., Gorodetsky, A.A., Geraci, G., Jakeman, J.D., & Portone, T. (2021). Recent Advances in Adaptive Refinement of (Regression-Based) Multifidelity Surrogates for UQ [Conference Presentation]. 10.2172/1847573
Portone, T., Swiler, L.P., Geraci, G., & Eldred, M. (2021). Application of Multifidelity Uncertainty Quantification Methods to a Subsurface Transport Model [Conference Presentation]. 10.2172/1847219
Zeng, X., Geraci, G., Eldred, M., & Ghanem, R. (2021). Exploring important directions for multifidelity uncertainty quantification by basis adaptation method [Conference Presentation]. 10.2172/1848037
Menhorn, F., Geraci, G., Seidl, D.T., Eldred, M., King, R., Bungartz, H., & Marzouk, Y. (2021). Multifidelity Monte Carlo Estimators for Robust Formulations in Optimization under Uncertainty [Conference Presentation]. 10.2172/1847580
Merritt, M., Geraci, G., Eldred, M., & Portone, T. (2021). Hybrid multi-level Monte Carlo polynomial chaos method for global sensitivity analysis [Conference Presentation]. 10.2172/1847581
Eldred, M. (2020). Introduction of Michael S. Eldred [Presentation]. https://www.osti.gov/biblio/1843098
Gorodetsky, A., Jakeman, J.D., Geraci, G., & Eldred, M. (2020). MFNets: Multifidelity data-driven networks for Bayesian learning and prediction. International Journal for Uncertainty Quantification, 10(6). 10.1615/Int.J.UncertaintyQuantification.2020032978
Menhorn, F., Geraci, G., Seidl, D.T., Eldred, M., King, R., Bungartz, H., & Marzouk, Y. (2020). Multifidelity strategies for optimization under uncertainty of wind power plants [Conference Presentation]. 10.2172/1836901
Gorodetsky, A., Tsuji, K., Jakeman, J.D., Geraci, G., & Eldred, M. (2020). Multifidelity information fusion via network models for uncertainty quantification in aerospace dynamical systems [Conference Presentation]. 10.2172/1836910
Eldred, M., Geraci, G., & Iaccarino, G. (2020). Foreword: Special Issue on Multilevel-Multifidelity Approaches for Uncertainty Quantification. International Journal for Uncertainty Quantification, 10(6). 10.1615/int.j.uncertaintyquantification.v10.i6.10
Geraci, G., Eldred, M., Gorodetsky, A., & Jakeman, J.D. (2020). Multifidelity Strategies in UQ: an overview on some recent trends in sampling based approaches [Conference Poster]. https://www.osti.gov/biblio/1822111