Publications

Results 26–50 of 268
Skip to search filters

Robust uncertainty quantification using response surface approximations of discontinuous functions

International Journal for Uncertainty Quantification

Wildey, T.; Gorodetsky, A.A.; Belme, A.C.; Shadid, John N.

This paper considers response surface approximations for discontinuous quantities of interest. Our objective is not to adaptively characterize the interface defining the discontinuity. Instead, we utilize an epistemic description of the uncertainty in the location of a discontinuity to produce robust bounds on sample-based estimates of probabilistic quantities of interest. We demonstrate that two common machine learning strategies for classification, one based on nearest neighbors (Voronoi cells) and one based on support vector machines, provide reasonable descriptions of the region where the discontinuity may reside. In higher dimensional spaces, we demonstrate that support vector machines are more accurate for discontinuities defined by smooth interfaces. We also show how gradient information, often available via adjoint-based approaches, can be used to define indicators to effectively detect a discontinuity and to decompose the samples into clusters using an unsupervised learning technique. Numerical results demonstrate the epistemic bounds on probabilistic quantities of interest for simplistic models and for a compressible fluid model with a shock-induced discontinuity.

More Details

Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

Journal of Computational and Applied Mathematics

Lin, Paul L.; Shadid, John N.; Hu, J.J.; Pawlowski, Roger P.; Cyr, E.C.

This work explores the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. This study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of the original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.

More Details
Results 26–50 of 268
Results 26–50 of 268