Publications

Results 26–31 of 31
Skip to search filters

Electronic structure of intrinsic defects in crystalline germanium telluride

Physical Review B - Condensed Matter and Materials Physics

Edwards, Arthur H.; Pineda, Andrew C.; Schultz, Peter A.; Martin, Marcus G.; Thompson, Aidan P.; Hjalmarson, Harold P.; Umrigar, Cyrus J.

Germanium telluride undergoes rapid transition between polycrystalline and amorphous states under either optical or electrical excitation. While the crystalline phases are predicted to be semiconductors, polycrystalline germanium telluride always exhibits p -type metallic conductivity. We present a study of the electronic structure and formation energies of the vacancy and antisite defects in both known crystalline phases. We show that these intrinsic defects determine the nature of free-carrier transport in crystalline germanium telluride. Germanium vacancies require roughly one-third the energy of the other three defects to form, making this by far the most favorable intrinsic defect. While the tellurium antisite and vacancy induce gap states, the germanium counterparts do not. A simple counting argument, reinforced by integration over the density of states, predicts that the germanium vacancy leads to empty states at the top of the valence band, thus giving a complete explanation of the observed p -type metallic conduction.

More Details

Mechanisms for radiation dose-rate sensitivity of bipolar transistors

Hjalmarson, Harold P.; Hjalmarson, Harold P.; Shaneyfelt, Marty R.; Schwank, James R.; Edwards, Arthur H.; Hembree, Charles E.; Mattsson, Thomas M.

Mechanisms for enhanced low-dose-rate sensitivity are described. In these mechanisms, bimolecular reactions dominate the kinetics at high dose rates thereby causing a sub-linear dependence on total dose, and this leads to a dose-rate dependence. These bimolecular mechanisms include electron-hole recombination, hydrogen recapture at hydrogen source sites, and hydrogen dimerization to form hydrogen molecules. The essence of each of these mechanisms is the dominance of the bimolecular reactions over the radiolysis reaction at high dose rates. However, at low dose rates, the radiolysis reaction dominates leading to a maximum effect of the radiation.

More Details

Spontaneous ionization of hydrogen atoms at the Si-SiO2 interface

Proposed for publication in Physical Review B.

Hjalmarson, Harold P.; Edwards, Arthur H.; Schultz, Peter A.; Hjalmarson, Harold P.

We present a series of electronic structure calculations that demonstrate a mechanism for spontaneous ionization of hydrogen at the Si-SiO{sub 2} interface. Specifically, we show that an isolated neutral hydrogen atom will spontaneously give up its charge and bond to a threefold coordinated oxygen atom. We refer to this entity as a proton. We have calculated the potential surface and found it to be entirely attractive. In contrast, hydrogen molecules will not undergo an analogous reaction. We relate these calculations both to proton generation experiments and to hydrogen plasma experiments.

More Details

Predicting Function of Biological Macromolecules: A Summary of LDRD Activities: Project 10746

Frink, Laura J.; Rempe, Susan R.; Means, Shawn A.; Stevens, Mark J.; Crozier, Paul C.; Martin, Marcus G.; Sears, Mark P.; Hjalmarson, Harold P.

This LDRD project has involved the development and application of Sandia's massively parallel materials modeling software to several significant biophysical systems. They have been successful in applying the molecular dynamics code LAMMPS to modeling DNA, unstructured proteins, and lipid membranes. They have developed and applied a coupled transport-molecular theory code (Tramonto) to study ion channel proteins with gramicidin A as a prototype. they have used the Towhee configurational bias Monte-Carlo code to perform rigorous tests of biological force fields. they have also applied the MP-Sala reacting-diffusion code to model cellular systems. Electroporation of cell membranes has also been studied, and detailed quantum mechanical studies of ion solvation have been performed. In addition, new molecular theory algorithms have been developed (in FasTram) that may ultimately make protein solvation calculations feasible on workstations. Finally, they have begun implementation of a combined molecular theory and configurational bias Monte-Carlo code. They note that this LDRD has provided a basis for several new internal (e.g. several new LDRD) and external (e.g. 4 NIH proposals and a DOE/Genomes to Life) proposals.

More Details
Results 26–31 of 31
Results 26–31 of 31