Identification of Defect Signatures in an Additively Manufactured Precipitation-Hardened Stainless Steel
Abstract not provided.
Abstract not provided.
Journal of Materials Processing Technology
An adage within the Additive Manufacturing (AM) community is that “complexity is free”. Complicated geometric features that normally drive manufacturing cost and limit design options are not typically problematic in AM. While geometric complexity is usually viewed from the perspective of part design, this advantage of AM also opens up new options in rapid, efficient material property evaluation and qualification. In the current work, an array of 100 miniature tensile bars are produced and tested for a comparable cost and in comparable time to a few conventional tensile bars. With this technique, it is possible to evaluate the stochastic nature of mechanical behavior. The current study focuses on stochastic yield strength, ultimate strength, and ductility as measured by strain at failure (elongation). However, this method can be used to capture the statistical nature of many mechanical properties including the full stress-strain constitutive response, elastic modulus, work hardening, and fracture toughness. Moreover, the technique could extend to strain-rate and temperature dependent behavior. As a proof of concept, the technique is demonstrated on a precipitation hardened stainless steel alloy, commonly known as 17-4PH, produced by two commercial AM vendors using a laser powder bed fusion process, also commonly known as selective laser melting. Using two different commercial powder bed platforms, the vendors produced material that exhibited slightly lower strength and markedly lower ductility compared to wrought sheet. Moreover, the properties were much less repeatable in the AM materials as analyzed in the context of a Weibull distribution, and the properties did not consistently meet minimum allowable requirements for the alloy as established by AMS. The diminished, stochastic properties were examined in the context of major contributing factors such as surface roughness and internal lack-of-fusion porosity. This high-throughput capability is expected to be useful for follow-on extensive parametric studies of factors that affect the statistical reliability of AM components.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 32nd ASPE Annual Meeting
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - ASPE 2015 Spring Topical Meeting: Achieving Precision Tolerances in Additive Manufacturing
Abstract not provided.
Abstract not provided.
Abstract not provided.
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.