Publications

Results 51–75 of 105
Skip to search filters

Evaluating the Marvell ThunderX2 Server Processor for HPC Workloads

2019 International Conference on High Performance Computing and Simulation, HPCS 2019

Hammond, Simon D.; Hughes, Clayton H.; Levenhagen, Michael J.; Vaughan, Courtenay T.; Younge, Andrew J.; Schwaller, Benjamin S.; Aguilar, Michael J.; Pedretti, Kevin P.; Laros, James H.

The high performance computing industry is undergoing a period of substantial change. Not least because of fabrication and lithographic challenges in the manufacturing of next-generation processors. As such challenges mount, the industry is looking to generate higher performance from additional functionality in the micro-architecture space as well as a greater emphasis on efficiency in the design of networkon-chip resources and memory subsystems. Such variation in design opens opportunities for new entrants in the data center and server markets where varying compute-to-memory ratios can present end users with more efficient node designs for particular workloads. In this paper we compare the recently released Marvell ThunderX2 Arm processor - arguably the first high-performance computing capable Arm design available in the marketplace. We perform a set of micro-benchmarking and mini-application evaluation on the ThunderX2 comparing it with Intel's Haswell and Skylake Xeon server parts commonly used in contemporary HPC designs. Our findings show that no one processor performs the best across all benchmarks, but that the ThunderX2 excels in areas demanding high memory bandwidth due to the provisioning of more memory channels in its design. We conclude that the ThunderX2 is a serious contender in the HPC server segment and has the potential to offer supercomputing sites with a viable high-performance alternative to existing designs from established industry players.

More Details

Small scale to extreme: Methods for characterizing energy efficiency in supercomputing applications

Sustainable Computing: Informatics and Systems

Younge, Andrew J.; Grant, Ryan E.; Laros, James H.; Levenhagen, Michael; Olivier, Stephen L.; Pedretti, Kevin; Ward, Lee

Power measurement capabilities are becoming commonplace on large scale HPC system deployments. There exist several different approaches to providing power measurements that are used today, primarily in-band and out-of-band measurements. Both of these fundamental techniques can be augmented with application-level profiling and the combination of different techniques is also possible. However, it can be difficult to assess the type and detail of measurement needed to obtain insights and knowledge of the power profile of an application. In addition, the heterogeneity of modern hybrid supercomputing platforms requires that different CPU architectures must be examined as well. This paper presents a taxonomy for classifying power profiling techniques on modern HPC platforms. Three relevant HPC mini-applications are analyzed across systems of multicore and manycore nodes to examine the level of detail, scope, and complexity of these power profiles. We demonstrate that a combination of out-of-band measurement with in-band application region profiling can provide an accurate, detailed view of power usage without introducing overhead. Furthermore, we confirm the energy and power profile of these mini applications at an extreme scale with the Trinity supercomputer. This finding validates the extrapolation of the power profiling techniques from testbed scale of just several dozen nodes to extreme scale Petaflops supercomputing systems, along with providing a set of recommendations on how to best profile future HPC workloads.

More Details

Data Pallets: Containerizing Storage for Reproducibility and Traceability

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Lofstead, Jay; Baker, Joshua B.; Younge, Andrew J.

Trusting simulation output is crucial for Sandia’s mission objectives. We rely on these simulations to perform our high-consequence mission tasks given national treaty obligations. Other science and modeling applications, while they may have high-consequence results, still require the strongest levels of trust to enable using the result as the foundation for both practical applications and future research. To this end, the computing community has developed workflow and provenance systems to aid in both automating simulation and modeling execution as well as determining exactly how was some output was created so that conclusions can be drawn from the data. Current approaches for workflows and provenance systems are all at the user level and have little to no system level support making them fragile, difficult to use, and incomplete solutions. The introduction of container technology is a first step towards encapsulating and tracking artifacts used in creating data and resulting insights, but their current implementation is focused solely on making it easy to deploy an application in an isolated “sandbox” and maintaining a strictly read-only mode to avoid any potential changes to the application. All storage activities are still using the system-level shared storage. This project explores extending the container concept to include storage as a new container type we call data pallets. Data Pallets are potentially writeable, auto generated by the system based on IO activities, and usable as a way to link the contained data back to the application and input deck used to create it.

More Details
Results 51–75 of 105
Results 51–75 of 105