Distributed Generalized Canonical Polyadic Decomposition
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Scientific Computing
In this paper, we develop software for decomposing sparse tensors that is portable to and performant on a variety of multicore, manycore, and GPU computing architectures. The result is a single code whose performance matches optimized architecture-specific implementations. The key to a portable approach is to determine multiple levels of parallelism that can be mapped in different ways to different architectures, and we explain how to do this for the matricized tensor times Khatri-Rao product (MTTKRP), which is the key kernel in canonical polyadic tensor decomposition. Our implementation leverages the Kokkos framework, which enables a single code to achieve high performance across multiple architectures that differ in how they approach fine-grained parallelism. We also introduce a new construct for portable thread-local arrays, which we call compile-time polymorphic arrays. Not only are the specifics of our approaches and implementation interesting for tuning tensor computations, but they also provide a roadmap for developing other portable high-performance codes. As a last step in optimizing performance, we modify the MTTKRP algorithm itself to do a permuted traversal of tensor nonzeros to reduce atomic-write contention. We test the performance of our implementation on 16- and 68-core Intel CPUs and the K80 and P100 NVIDIA GPUs, showing that we are competitive with state-of-the-art architecture-specific codes while having the advantage of being able to run on a variety of architectures.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent work on eigenvalues and eigenvectors for tensors of order m {>=} 3 has been motivated by applications in blind source separation, magnetic resonance imaging, molecular conformation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Ax{sup m-1} = {lambda}x subject to {parallel}x{parallel} = 1, which is closely related to optimal rank-1 approximation of a symmetric tensor. Our contribution is a novel shifted symmetric higher-order power method (SS-HOPM), which we showis guaranteed to converge to a tensor eigenpair. SS-HOPM can be viewed as a generalization of the power iteration method for matrices or of the symmetric higher-order power method. Additionally, using fixed point analysis, we can characterize exactly which eigenpairs can and cannot be found by the method. Numerical examples are presented, including examples from an extension of the method to fnding complex eigenpairs.
This report is a summary of the accomplishments of the 'Leveraging Multi-way Linkages on Heterogeneous Data' which ran from FY08 through FY10. The goal was to investigate scalable and robust methods for multi-way data analysis. We developed a new optimization-based method called CPOPT for fitting a particular type of tensor factorization to data; CPOPT was compared against existing methods and found to be more accurate than any faster method and faster than any equally accurate method. We extended this method to computing tensor factorizations for problems with incomplete data; our results show that you can recover scientifically meaningfully factorizations with large amounts of missing data (50% or more). The project has involved 5 members of the technical staff, 2 postdocs, and 1 summer intern. It has resulted in a total of 13 publications, 2 software releases, and over 30 presentations. Several follow-on projects have already begun, with more potential projects in development.
The problem of incomplete data - i.e., data with missing or unknown values - in multi-way arrays is ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of missing data, CP can be formulated as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 x 1000 x 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process.
The data in many disciplines such as social networks, web analysis, etc. is link-based, and the link structure can be exploited for many different data mining tasks. In this paper, we consider the problem of temporal link prediction: Given link data for time periods 1 through T, can we predict the links in time period T + 1? Specifically, we look at bipartite graphs changing over time and consider matrix- and tensor-based methods for predicting links. We present a weight-based method for collapsing multi-year data into a single matrix. We show how the well-known Katz method for link prediction can be extended to bipartite graphs and, moreover, approximated in a scalable way using a truncated singular value decomposition. Using a CANDECOMP/PARAFAC tensor decomposition of the data, we illustrate the usefulness of exploiting the natural three-dimensional structure of temporal link data. Through several numerical experiments, we demonstrate that both matrix- and tensor-based techniques are effective for temporal link prediction despite the inherent difficulty of the problem.
The problem of missing data is ubiquitous in domains such as biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, and communication networks|all domains in which data collection is subject to occasional errors. Moreover, these data sets can be quite large and have more than two axes of variation, e.g., sender, receiver, time. Many applications in those domains aim to capture the underlying latent structure of the data; in other words, they need to factorize data sets with missing entries. If we cannot address the problem of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP), and formulate the CP model as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) using a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes.
We present Poblano v1.0, a Matlab toolbox for solving gradient-based unconstrained optimization problems. Poblano implements three optimization methods (nonlinear conjugate gradients, limited-memory BFGS, and truncated Newton) that require only first order derivative information. In this paper, we describe the Poblano methods, provide numerous examples on how to use Poblano, and present results of Poblano used in solving problems from a standard test collection of unconstrained optimization problems.
Abstract not provided.