Publications

21 Results
Skip to search filters

Situation Awareness and Automation in the Electric Grid Control Room

Procedia Manufacturing

Adams, Susan S.; Cole, Kerstan S.; Haass, Michael J.; Warrender, Christina E.; Jeffers, Robert F.; Burnham, Laurie B.; Forsythe, James C.

Electric distribution utilities, the companies that feed electricity to end users, are overseeing a technological transformation of their networks, installing sensors and other automated equipment, that are fundamentally changing the way the grid operates. These grid modernization efforts will allow utilities to incorporate some of the newer technology available to the home user – such as solar panels and electric cars – which will result in a bi-directional flow of energy and information. How will this new flow of information affect control room operations? How will the increased automation associated with smart grid technologies influence control room operators’ decisions? And how will changes in control room operations and operator decision making impact grid resilience? These questions have not been thoroughly studied, despite the enormous changes that are taking place. In this study, which involved collaborating with utility companies in the state of Vermont, the authors proposed to advance the science of control-room decision making by understanding the impact of distribution grid modernization on operator performance. Distribution control room operators were interviewed to understand daily tasks and decisions and to gain an understanding of how these impending changes will impact control room operations. Situation awareness was found to be a major contributor to successful control room operations. However, the impact of growing levels of automation due to smart grid technology on operators’ situation awareness is not well understood. Future work includes performing a naturalistic field study in which operator situation awareness will be measured in real-time during normal operations and correlated with the technological changes that are underway. The results of this future study will inform tools and strategies that will help system operators adapt to a changing grid, respond to critical incidents and maintain critical performance skills.

More Details

Toward an Objective Measure of Automation for the Electric Grid

Procedia Manufacturing

Haass, Michael J.; Warrender, Christina E.; Burnham, Laurie B.; Jeffers, Robert F.; Adams, Susan S.; Cole, Kerstan S.; Forsythe, James C.

The impact of automation on human performance has been studied by human factors researchers for over 35 years. One unresolved facet of this research is measurement of the level of automation across and within engineered systems. Repeatable methods of observing, measuring and documenting the level of automation are critical to the creation and validation of generalized theories of automation's impact on the reliability and resilience of human-in-the-loop systems. Numerous qualitative scales for measuring automation have been proposed. However these methods require subjective assessments based on the researcher's knowledge and experience, or through expert knowledge elicitation involving highly experienced individuals from each work domain. More recently, quantitative scales have been proposed, but have yet to be widely adopted, likely due to the difficulty associated with obtaining a sufficient number of empirical measurements from each system component. Our research suggests the need for a quantitative method that enables rapid measurement of a system's level of automation, is applicable across domains, and can be used by human factors practitioners in field studies or by system engineers as part of their technical planning processes. In this paper we present our research methodology and early research results from studies of electricity grid distribution control rooms. Using a system analysis approach based on quantitative measures of level of automation, we provide an illustrative analysis of select grid modernization efforts. This measure of the level of automation can be displayed as either a static, historical view of the system's automation dynamics (the dynamic interplay between human and automation required to maintain system performance) or it can be incorporated into real-time visualization systems already present in control rooms.

More Details

A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods

Reliability Engineering and System Safety

Groth, Katrina G.; Swiler, Laura P.; Adams, Susan S.

In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existing HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.

More Details

Robust automated knowledge capture

Trumbo, Michael C.; Haass, Michael J.; Adams, Susan S.; Hendrickson, Stacey M.; Abbott, Robert G.

This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

More Details

Communications-based automated assessment of team cognitive performance

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Lakkaraju, Kiran; Adams, Susan S.; Abbott, Robert G.; Forsythe, James C.

In this paper we performed analysis of speech communications in order to determine if we can differentiate between expert and novice teams based on communication patterns. Two pairs of experts and novices performed numerous test sessions on the E-2 Enhanced Deployable Readiness Trainer (EDRT) which is a medium-fidelity simulator of the Naval Flight Officer (NFO) stations positioned at bank end of the E-2 Hawkeye. Results indicate that experts and novices can be differentiated based on communication patterns. First, experts and novices differ significantly with regard to the frequency of utterances, with both expert teams making many fewer radio calls than both novice teams. Next, the semantic content of utterances was considered. Using both manual and automated speech-to-text conversion, the resulting text documents were compared. For 7 of 8 subjects, the two most similar subjects (using cosine-similarity of term vectors) were in the same category of expertise (novice/expert). This means that the semantic content of utterances by experts was more similar to other experts, than novices, and vice versa. Finally, using machine learning techniques we constructed a classifier that, given as input the text of the speech of a subject, could identify whether the individual was an expert or novice with a very low error rate. By looking at the parameters of the machine learning algorithm we were also able to identify terms that are strongly associated with novices and experts. © 2011 Springer-Verlag.

More Details

Using after-action review based on automated performance assessment to enhance training effectiveness

Adams, Susan S.; Basilico, Justin D.; Abbott, Robert G.

Training simulators have become increasingly popular tools for instructing humans on performance in complex environments. However, the question of how to provide individualized and scenario-specific assessment and feedback to students remains largely an open question. In this work, we follow-up on previous evaluations of the Automated Expert Modeling and Automated Student Evaluation (AEMASE) system, which automatically assesses student performance based on observed examples of good and bad performance in a given domain. The current study provides a rigorous empirical evaluation of the enhanced training effectiveness achievable with this technology. In particular, we found that students given feedback via the AEMASE-based debrief tool performed significantly better than students given only instructor feedback on two out of three domain-specific performance metrics.

More Details

Performance assessment to enhance training effectiveness

Adams, Susan S.; Basilico, Justin D.; Abbott, Robert G.

Training simulators have become increasingly popular tools for instructing humans on performance in complex environments. However, the question of how to provide individualized and scenario-specific assessment and feedback to students remains largely an open question. To maximize training efficiency, new technologies are required that assist instructors in providing individually relevant instruction. Sandia National Laboratories has shown the feasibility of automated performance assessment tools, such as the Sandia-developed Automated Expert Modeling and Student Evaluation (AEMASE) software, through proof-of-concept demonstrations, a pilot study, and an experiment. In the pilot study, the AEMASE system, which automatically assesses student performance based on observed examples of good and bad performance in a given domain, achieved a high degree of agreement with a human grader (89%) in assessing tactical air engagement scenarios. In more recent work, we found that AEMASE achieved a high degree of agreement with human graders (83-99%) for three Navy E-2 domain-relevant performance metrics. The current study provides a rigorous empirical evaluation of the enhanced training effectiveness achievable with this technology. In particular, we assessed whether giving students feedback based on automated metrics would enhance training effectiveness and improve student performance. We trained two groups of employees (differentiated by type of feedback) on a Navy E-2 simulator and assessed their performance on three domain-specific performance metrics. We found that students given feedback via the AEMASE-based debrief tool performed significantly better than students given only instructor feedback on two out of three metrics. Future work will focus on extending these developments for automated assessment of teamwork.

More Details

LDRD final report for improving human effectiveness for extreme-scale problem solving : assessing the effectiveness of electronic brainstorming in an industrial setting

Dornburg, Courtney S.; Adams, Susan S.; Hendrickson, Stacey M.; Davidson, George S.

An experiment was conducted comparing the effectiveness of individual versus group electronic brainstorming in order to address difficult, real world challenges. While industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term, laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges over the course of four days. Employees and contractors at a national security laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a 'wickedly' difficult problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p<0.05) out-performed the group working together. When idea quality is used as the benchmark of success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses, rather than electronically convening a group. This research suggests that industrial reliance upon electronic problem solving groups should be tempered, and large nominal groups might be the more appropriate vehicle for solving wicked corporate issues.

More Details

Massively parallel collaboration : a literature review

Dornburg, Courtney S.; Adams, Susan S.; Forsythe, James C.; Davidson, George S.

The present paper explores group dynamics and electronic communication, two components of wicked problem solving that are inherent to the national security environment (as well as many other business environments). First, because there can be no ''right'' answer or solution without first having agreement about the definition of the problem and the social meaning of a ''right solution'', these problems (often) fundamentally relate to the social aspects of groups, an area with much empirical research and application still needed. Second, as computer networks have been increasingly used to conduct business with decreased costs, increased information accessibility, and rapid document, database, and message exchange, electronic communication enables a new form of problem solving group that has yet to be well understood, especially as it relates to solving wicked problems.

More Details

Assessing the effectiveness of electronic brainstorming in an industrial setting : experimental design document

Adams, Susan S.; Davidson, George S.; Dornburg, Courtney S.; Forsythe, James C.

An experiment is proposed which will compare the effectiveness of individual versus group brainstorming in addressing difficult, real world challenges. Previous research into electronic brainstorming has largely been limited to laboratory experiments using small groups of students answering questions irrelevant to an industrial setting. The proposed experiment attempts to extend current findings to real-world employees and organization-relevant challenges. Our employees will brainstorm ideas over the course of several days, echoing the real-world scenario in an industrial setting. The methodology and hypotheses to be tested are presented along with two questions for the experimental brainstorming sessions. One question has been used in prior work and will allow calibration of the new results with existing work. The second question qualifies as a complicated, perhaps even wickedly hard, question, with relevance to modern management practices.

More Details

Improving human effectiveness for extreme-scale problem solving : final report (assessing the effectiveness of electronic brainstorming in an industrial setting)

Davidson, George S.; Dornburg, Courtney S.; Adams, Susan S.; Hendrickson, Stacey M.; Bauer, Travis L.; Forsythe, James C.

An experiment was conducted comparing the effectiveness of individual versus group electronic brainstorming in order to address difficult, real world challenges. While industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term, laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The current experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges over the course of four days. Findings are twofold. First, the data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p<0.05) out performed the group working together. The theoretical and applied (e.g., cost effectiveness) implications of this finding are discussed. Second, the current experiment yielded several viable solutions to the wickedly difficult problem that was posed.

More Details
21 Results
21 Results