Adjoint-enabled Robust Radiation Shield Design
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019
The design of satellites usually includes the objective of minimizing mass due to high launch costs, which is challenging due to the need to protect sensitive electronics from the space radiation environment by means of radiation shielding. This is further complicated by the need to account for uncertainties, e.g. in manufacturing. There is growing interest in automated design optimization and uncertainty quantification (UQ) techniques to help achieve that objective. Traditional optimization and UQ approaches that rely exclusively on response functions (e.g. dose calculations) can be quite expensive when applied to transport problems. Previously we showed how adjoint-based transport sensitivities used in conjunction with gradient-based optimization algorithms can be quite effective in designing mass-efficient electron and/or proton shields in one- or two-dimensional Cartesian geometries. In this paper we extend that work to UQ and to robust design (i.e. optimization that considers uncertainties) in 2D. This consists primarily of using the sensitivities to geometric changes, originally derived for optimization, within relevant algorithms for UQ and robust design. We perform UQ analyses on previous optimized designs given some assumed manufacturing uncertainties. We also conduct a new optimization exercise that accounts for the same uncertainties. Our results show much improved computational efficiencies over previous approaches.
Transactions of the American Nuclear Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.