Publications

Results 1–25 of 29
Skip to search filters

Islet: interpolation semi-Lagrangian element-based transport

Geoscientific Model Development (Online)

Bradley, Andrew M.; Bosler, Peter A.; Guba, Oksana G.

Abstract. Advection of trace species, or tracers, also called tracer transport, in models of the atmosphere and other physical domains is an important and potentially computationally expensive part of a model's dynamical core. Semi-Lagrangian (SL) advection methods are efficient because they permit a time step much larger than the advective stability limit for explicit Eulerian methods without requiring the solution of a globally coupled system of equations as implicit Eulerian methods do. Thus, to reduce the computational expense of tracer transport, dynamical cores often use SL methods to advect tracers. The class of interpolation semi-Lagrangian (ISL) methods contains potentially extremely efficient SL methods. We describe a finite-element ISL transport method that we call the interpolation semi-Lagrangian element-based transport (Islet) method, such as for use with atmosphere models discretized using the spectral element method. The Islet method uses three grids that share an element grid: a dynamics grid supporting, for example, the Gauss–Legendre–Lobatto basis of degree three; a physics parameterizations grid with a configurable number of finite-volume subcells per element; and a tracer grid supporting use of Islet bases with particular basis again configurable. This method provides extremely accurate tracer transport and excellent diagnostic values in a number of verification problems.

More Details

A framework to evaluate IMEX schemes for atmospheric models

Geoscientific Model Development

Guba, Oksana G.; Taylor, Mark A.; Bradley, Andrew M.; Bosler, Peter A.; Steyer, Andrew S.

We present a new evaluation framework for implicit and explicit (IMEX) Runge-Kutta time-stepping schemes. The new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate the stability of IMEX methods and their dispersion and dissipation of gravity, Rossby, and acoustic waves. We test the new framework on a variety of IMEX schemes and use it to develop and analyze a set of second-order low-storage IMEX Runge-Kutta methods with a high Courant-Friedrichs-Lewy (CFL) number. We show that the new framework is more selective than the 2-D acoustic system previously used in the literature. Schemes that are stable for the 2-D acoustic system are not stable for the system of normal modes.

More Details

Compatible Particle Discretizations. Final LDRD Report

Bochev, Pavel B.; Bosler, Peter A.; Kuberry, Paul A.; Perego, Mauro P.; Peterson, Kara J.; Trask, Nathaniel A.

This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.

More Details

Communication-efficient property preservation in tracer transport

SIAM Journal on Scientific Computing

Bradley, Andrew M.; Bosler, Peter A.; Guba, Oksana G.; Taylor, Mark A.; Barnett, Gregory A.

Atmospheric tracer transport is a computationally demanding component of the atmospheric dynamical core of weather and climate simulations. Simulations typically have tens to hundreds of tracers. A tracer field is required to preserve several properties, including mass, shape, and tracer consistency. To improve computational efficiency, it is common to apply different spatial and temporal discretizations to the tracer transport equations than to the dynamical equations. Using different discretizations increases the difficulty of preserving properties. This paper provides a unified framework to analyze the property preservation problem and classes of algorithms to solve it. We examine the primary problem and a safety problem; describe three classes of algorithms to solve these; introduce new algorithms in two of these classes; make connections among the algorithms; analyze each algorithm in terms of correctness, bound on its solution magnitude, and its communication efficiency; and study numerical results. A new algorithm, QLT, has the smallest communication volume, and in an important case it redistributes mass approximately locally. These algorithms are only very loosely coupled to the underlying discretizations of the dynamical and tracer transport equations and thus are broadly and efficiently applicable. In addition, they may be applied to remap problems in applications other than tracer transport.

More Details

Conservative multimoment transport along characteristics for discontinuous Galerkin methods

SIAM Journal on Scientific Computing

Bosler, Peter A.; Bradley, Andrew M.; Taylor, Mark A.

A set of algorithms based on characteristic discontinuous Galerkin methods is presented for tracer transport on the sphere. The algorithms are designed to reduce message passing interface communication volume per unit of simulated time relative to current methods generally, and to the spectral element scheme employed by the U.S. Department of Energy's Exascale Earth System Model (E3SM) specifically. Two methods are developed to enforce discrete mass conservation when the transport schemes are coupled to a separate dynamics solver; constrained transport and Jacobian-combined transport. A communication-efficient method is introduced to enforce tracer consistency between the transport scheme and dynamics solver; this method also provides the transport scheme's shape preservation capability. A subset of the algorithms derived here is implemented in E3SM and shown to improve transport performance by a factor of 2.2 for the model's standard configuration with 40 tracers at the strong scaling limit of one element per core.

More Details

A Lagrangian particle method with remeshing for tracer transport on the sphere

Journal of Computational Physics

Bosler, Peter A.; Kent, James; Krasny, Robert; Jablonowski, Christiane

A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracer integral, and preservation of nonlinear correlation in a pair of tracers. We compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.

More Details

The Aeras Next Generation Global Atmosphere Model

Bosler, Peter A.; Bova, S.W.; Demeshko, Irina P.; Fike, Jeffrey A.; Guba, Oksana G.; Overfelt, James R.; Roesler, Erika L.; Salinger, Andrew G.; Smith, Thomas M.; Kalashnikova, Irina; Watkins, Jerry E.

The Next Generation Global Atmosphere Model LDRD project developed a suite of atmosphere models: a shallow water model, an x - z hydrostatic model, and a 3D hydrostatic model, by using Albany, a finite element code. Albany provides access to a large suite of leading-edge Sandia high- performance computing technologies enabled by Trilinos, Dakota, and Sierra. The next-generation capabilities most relevant to a global atmosphere model are performance portability and embedded uncertainty quantification (UQ). Performance portability is the capability for a single code base to run efficiently on diverse set of advanced computing architectures, such as multi-core threading or GPUs. Embedded UQ refers to simulation algorithms that have been modified to aid in the quantifying of uncertainties. In our case, this means running multiple samples for an ensemble concurrently, and reaping certain performance benefits. We demonstrate the effectiveness of these approaches here as a prelude to introducing them into ACME.

More Details

Stride Search: A general algorithm for storm detection in high-resolution climate data

Geoscientific Model Development

Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; Mundt, Miranda R.

This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclone detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.

More Details
Results 1–25 of 29
Results 1–25 of 29