Some existing approaches to modelling the thermodynamics of moist air make approximations that break thermodynamic consistency, such that the resulting thermodynamics does not obey the first and second laws or has other inconsistencies. Recently, an approach to avoid such inconsistency has been suggested: the use of thermodynamic potentials in terms of their natural variables, from which all thermodynamic quantities and relationships (equations of state) are derived. In this article, we develop this approach for unapproximated moist-air thermodynamics and two widely used approximations: the constant-κ approximation and the dry heat capacities approximation. The (consistent) constant-κ approximation is particularly attractive because it leads to, with the appropriate choice of thermodynamic variable, adiabatic dynamics that depend only on total mass and are independent of the breakdown between water forms. Additionally, a wide variety of material from different sources in the literature on thermodynamics in atmospheric modelling is brought together. It is hoped that this article provides a comprehensive reference for the use of thermodynamic potentials in atmospheric modelling, especially for the three systems considered here.
Abstract. Advection of trace species, or tracers, also called tracer transport, in models of the atmosphere and other physical domains is an important and potentially computationally expensive part of a model's dynamical core. Semi-Lagrangian (SL) advection methods are efficient because they permit a time step much larger than the advective stability limit for explicit Eulerian methods without requiring the solution of a globally coupled system of equations as implicit Eulerian methods do. Thus, to reduce the computational expense of tracer transport, dynamical cores often use SL methods to advect tracers. The class of interpolation semi-Lagrangian (ISL) methods contains potentially extremely efficient SL methods. We describe a finite-element ISL transport method that we call the interpolation semi-Lagrangian element-based transport (Islet) method, such as for use with atmosphere models discretized using the spectral element method. The Islet method uses three grids that share an element grid: a dynamics grid supporting, for example, the Gauss–Legendre–Lobatto basis of degree three; a physics parameterizations grid with a configurable number of finite-volume subcells per element; and a tracer grid supporting use of Islet bases with particular basis again configurable. This method provides extremely accurate tracer transport and excellent diagnostic values in a number of verification problems.
We present a new evaluation framework for implicit and explicit (IMEX) Runge-Kutta time-stepping schemes. The new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate the stability of IMEX methods and their dispersion and dissipation of gravity, Rossby, and acoustic waves. We test the new framework on a variety of IMEX schemes and use it to develop and analyze a set of second-order low-storage IMEX Runge-Kutta methods with a high Courant-Friedrichs-Lewy (CFL) number. We show that the new framework is more selective than the 2-D acoustic system previously used in the literature. Schemes that are stable for the 2-D acoustic system are not stable for the system of normal modes.
We present an effort to port the nonhydrostatic atmosphere dynamical core of the Energy Exascale Earth System Model (E3SM) to efficiently run on a variety of architectures, including conventional CPU, many-core CPU, and GPU. We specifically target cloud-resolving resolutions of 3 km and 1 km. To express on-node parallelism we use the C++ library Kokkos, which allows us to achieve a performance portable code in a largely architecture-independent way. Our C++ implementation is at least as fast as the original Fortran implementation on IBM Power9 and Intel Knights Landing processors, proving that the code refactor did not compromise the efficiency on CPU architectures. On the other hand, when using the GPUs, our implementation is able to achieve 0.97 Simulated Years Per Day, running on the full Summit supercomputer. To the best of our knowledge, this is the most achieved to date by any global atmosphere dynamical core running at such resolutions.
We derive a formulation of the nonhydrostatic equations in spherical geometry with a Lorenz staggered vertical discretization. The combination conserves a discrete energy in exact time integration when coupled with a mimetic horizontal discretization. The formulation is a version of Dubos and Tort (2014, https://doi.org/10.1175/MWR-D-14-00069.1) rewritten in terms of primitive variables. It is valid for terrain following mass or height coordinates and for both Eulerian or vertically Lagrangian discretizations. The discretization relies on an extension to Simmons and Burridge (1981, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2) vertical differencing, which we show obeys a discrete derivative product rule. This product rule allows us to simplify the treatment of the vertical transport terms. Energy conservation is obtained via a term-by-term balance in the kinetic, internal, and potential energy budgets, ensuring an energy-consistent discretization up to time truncation error with no spurious sources of energy. We demonstrate convergence with respect to time truncation error in a spectral element code with a horizontal explicit vertically implicit implicit-explicit time stepping algorithm.
We present an architecture-portable and performant implementation of the atmospheric dynamical core (High-Order Methods Modeling Environment, HOMME) of the Energy Exascale Earth System Model (E3SM). The original Fortran implementation is highly performant and scalable on conventional architectures using the Message Passing Interface (MPI) and Open MultiProcessor (OpenMP) programming models. We rewrite the model in C++ and use the Kokkos library to express on-node parallelism in a largely architecture-independent implementation. Kokkos provides an abstraction of a compute node or device, layout-polymorphic multidimensional arrays, and parallel execution constructs. The new implementation achieves the same or better performance on conventional multicore computers and is portable to GPUs. We present performance data for the original and new implementations on multiple platforms, on up to 5400 compute nodes, and study several aspects of the single-and multi-node performance characteristics of the new implementation on conventional CPU (e.g., Intel Xeon), many core CPU (e.g., Intel Xeon Phi Knights Landing), and Nvidia V100 GPU.
Atmospheric tracer transport is a computationally demanding component of the atmospheric dynamical core of weather and climate simulations. Simulations typically have tens to hundreds of tracers. A tracer field is required to preserve several properties, including mass, shape, and tracer consistency. To improve computational efficiency, it is common to apply different spatial and temporal discretizations to the tracer transport equations than to the dynamical equations. Using different discretizations increases the difficulty of preserving properties. This paper provides a unified framework to analyze the property preservation problem and classes of algorithms to solve it. We examine the primary problem and a safety problem; describe three classes of algorithms to solve these; introduce new algorithms in two of these classes; make connections among the algorithms; analyze each algorithm in terms of correctness, bound on its solution magnitude, and its communication efficiency; and study numerical results. A new algorithm, QLT, has the smallest communication volume, and in an important case it redistributes mass approximately locally. These algorithms are only very loosely coupled to the underlying discretizations of the dynamical and tracer transport equations and thus are broadly and efficiently applicable. In addition, they may be applied to remap problems in applications other than tracer transport.