Publications

3 Results
Skip to search filters

Nonparametric, data-based kernel interpolation for particle-tracking simulations and kernel density estimation

Advances in Water Resources

Benson, David A.; Bolster, Diogo; Pankavich, Stephen; Schmidt, Michael J.

Traditional interpolation techniques for particle tracking include binning and convolutional formulas that use pre-determined (i.e., closed-form, parameteric) kernels. In many instances, the particles are introduced as point sources in time and space, so the cloud of particles (either in space or time) is a discrete representation of the Green's function of an underlying PDE. As such, each particle is a sample from the Green's function; therefore, each particle should be distributed according to the Green's function. In short, the kernel of a convolutional interpolation of the particle sample “cloud” should be a replica of the cloud itself. This idea gives rise to an iterative method by which the form of the kernel may be discerned in the process of interpolating the Green's function. When the Green's function is a density, this method is broadly applicable to interpolating a kernel density estimate based on random data drawn from a single distribution. We formulate and construct the algorithm and demonstrate its ability to perform kernel density estimation of skewed and/or heavy-tailed data including breakthrough curves.

More Details

A Computational Information Criterion for Particle-Tracking with Sparse or Noisy Data

Advances in Water Resources

Tran, Nhat T.; Benson, David A.; Schmidt, Michael J.; Pankavich, Stephen D.

Traditional probabilistic methods for the simulation of advection-diffusion equations (ADEs) often overlook the entropic contribution of the discretization, e.g., the number of particles, within associated numerical methods. Many times, the gain in accuracy of a highly discretized numerical model is outweighed by its associated computational costs or the noise within the data. We address the question of how many particles are needed in a simulation to best approximate and estimate parameters in one-dimensional advective-diffusive transport. To do so, we use the well-known Akaike Information Criterion (AIC) and a recently-developed correction called the Computational Information Criterion (COMIC) to guide the model selection process. Random-walk and mass-transfer particle tracking methods are employed to solve the model equations at various levels of discretization. Numerical results demonstrate that the COMIC provides an optimal number of particles that can describe a more efficient model in terms of parameter estimation and model prediction compared to the model selected by the AIC even when the data is sparse or noisy, the sampling volume is not uniform throughout the physical domain, or the error distribution of the data is non-IID Gaussian.

More Details
3 Results
3 Results