Transmission electron microscopy and scanning capacitance microscopy analysis of dislocation-induced leakages in n-channel I/O transistors
Abstract not provided.
Abstract not provided.
Proposed for publication in the Conference proceedings from the 31st International Symposium for Testing and Failure Analysis.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Failure analysis (FA) tools have been applied to analyze tungsten coated polysilicon microengines. These devices were stressed under accelerated conditions at ambient temperatures and pressure. Preliminary results illustrating the failure modes of microengines operated under variable humidity and ultra-high drive frequency will also be shown. Analysis of tungsten coated microengines revealed the absence of wear debris in microengines operated under ambient conditions. Plan view imaging of these microengines using scanning electron microscopy (SEM) revealed no accumulation of wear debris on the surface of the gears or ground plane on microengines operated under standard laboratory conditions. Friction bearing surfaces were exposed and analyzed using the focused ion beam (FIB). These cross sections revealed no accumulation of debris along friction bearing surfaces. By using transmission electron microscopy (TEM) in conjunction with electron energy loss spectroscopy (EELS), we were able to identify the thickness, elemental analysis, and crystallographic properties of tungsten coated MEMS devices. Atomic force microscopy was also utilized to analyze the surface roughness of friction bearing surfaces.