In turbulent flows, kinetic energy is transferred from the largest scales to progressively smaller scales, until it is ultimately converted into heat. The Navier-Stokes equations are almost universally used to study this process. Here, by comparing with molecular-gas-dynamics simulations, we show that the Navier-Stokes equations do not describe turbulent gas flows in the dissipation range because they neglect thermal fluctuations. We investigate decaying turbulence produced by the Taylor-Green vortex and find that in the dissipation range the molecular-gas-dynamics spectra grow quadratically with wave number due to thermal fluctuations, in agreement with previous predictions, while the Navier-Stokes spectra decay exponentially. Furthermore, the transition to quadratic growth occurs at a length scale much larger than the gas molecular mean free path, namely in a regime that the Navier-Stokes equations are widely believed to describe. In fact, our results suggest that the Navier-Stokes equations are not guaranteed to describe the smallest scales of gas turbulence for any positive Knudsen number.
We report flow statistics and visualizations from gas-kinetic simulations using the Direct Simulation Monte Carlo (DSMC) method of compressible turbulent Couette flow over a porous substrate composed of an array of circular cylinders for which the Knudsen number is O(10-1). Comparisons are made with both smooth-wall DSMC simulations and direct numerical simulations of the Navier-Stokes equations for the same conditions. Roughness, permeability, and noncontinuum effects are assessed.
Image-based simulation, the use of 3D images to calculate physical quantities, relies on image segmentation for geometry creation. However, this process introduces image segmentation uncertainty because different segmentation tools (both manual and machine-learning-based) will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be surprisingly nontrivial. We establish that bounding segmentation uncertainty can fail in these nontrivial situations. While our work does not eliminate segmentation uncertainty, it improves simulation credibility by making visible the previously unrecognized segmentation uncertainty plaguing image-based simulation.