This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.
This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic, SEIR model using reported case counts and mortality data. An SEIR model is based on classifying individuals with respect to their status in regards to the progression of the disease, where S is the number individuals who remain susceptible to the disease, E is the number of individuals who have been exposed to the disease but not yet infectious, I is the number of individuals who are currently infectious, and R is the number of recovered individuals. For convenience, we include in our notation the number of infections or transmissions, T, that represents the number of individuals transitioning from compartment S to compartment E over a particular interval. Similarly, we use C to represent the number of reported cases.
In response to anticipated resource shortfalls related to the treatment and testing of COVID-19, many communities are planning to build additional facilities to increase capacity. These facilities include field hospitals, testing centers, mobile manufacturing units, and distribution centers. In many cases, these facilities are intended to be temporary and are designed to meet an immediate need. When deciding where to place new facilities many factors need to be considered, including the feasibility of potential locations, existing resource availability, anticipated demand, and accessibility between patients and the new facility. In this project, a facility location optimization model was developed to integrate these key pieces of information to help decision makers identify the best place, or places, to build a facility to meet anticipated resource demands. The facility location optimization model uses the location of existing resources and the anticipated resource demand at each location to minimize the distance a patient must travel to get to the resource they need. The optimization formulation is presented below. The model was designed to operate at the county scale, where patients are grouped per county. This assumption can be modified to integrate other scales or include individual patients.
While peak shaving is commonly used to reduce power costs, chemical process facilities that can reduce power consumption on demand during emergencies (e.g., extreme weather events) bring additional value through improved resilience. For process facilities to effectively negotiate demand response (DR) contracts and make investment decisions regarding flexibility, they need to quantify their additional value to the grid. We present a grid-centric mixed-integer stochastic programming framework to determine the value of DR for improving grid resilience in place of capital investments that can be cost prohibitive for system operators. We formulate problems using both a linear approximation and a nonlinear alternating current power flow model. Our numerical results with both models demonstrate that DR can be used to reduce the capital investment necessary for resilience, increasing the value that chemical process facilities bring through DR. However, the linearized model often underestimates the amount of DR needed in our case studies. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. AIChE J, 65: e16508, 2019.