Publications

6 Results
Skip to search filters

Numerical methods for nonlocal and fractional models

Acta Numerica

D'Elia, Marta D.; Du, Qiang; Glusa, Christian A.; Gunzburger, Max D.; Tian, Xiaochuan; Zhou, Zhi

Partial differential equations (PDEs) are used with huge success to model phenomena across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDEs fail to adequately model observed phenomena, or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. In this article we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis and of specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modelling and algorithmic extensions, which serve to show the wide applicability of nonlocal modelling.

More Details

Fractional diffusion on bounded domains

Fractional Calculus and Applied Analysis

Defterli, Ozlem; D'Elia, Marta D.; Du, Qiang; Gunzburger, Max D.; Lehoucq, Richard B.; Meerschaert, Mark M.

The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

More Details

Stability of Streamline Upwind Petrov-Galerkin (SUPG) finite elements for transient advection-diffusion problems

Proposed for publication in Journal of Computer Methods in Application and Mechanical Engineering.

Bochev, Pavel B.; Bochev, Pavel B.; Gunzburger, Max D.; Shadid, John N.

Implicit time integration coupled with SUPG discretization in space leads to additional terms that provide consistency and improve the phase accuracy for convection dominated flows. Recently, it has been suggested that for small Courant numbers these terms may dominate the streamline diffusion term, ostensibly causing destabilization of the SUPG method. While consistent with a straightforward finite element stability analysis, this contention is not supported by computational experiments and contradicts earlier Von-Neumann stability analyses of the semidiscrete SUPG equations. This prompts us to re-examine finite element stability of the fully discrete SUPG equations. A careful analysis of the additional terms reveals that, regardless of the time step size, they are always dominated by the consistent mass matrix. Consequently, SUPG cannot be destabilized for small Courant numbers. Numerical results that illustrate our conclusions are reported.

More Details

Initial evaluation of Centroidal Voronoi Tessellation method for statistical sampling and function integration

Romero, Vicente J.; Romero, Vicente J.; Gunzburger, Max D.

A recently developed Centroidal Voronoi Tessellation (CVT) unstructured sampling method is investigated here to assess its suitability for use in statistical sampling and function integration. CVT efficiently generates a highly uniform distribution of sample points over arbitrarily shaped M-Dimensional parameter spaces. It has recently been shown on several 2-D test problems to provide superior point distributions for generating locally conforming response surfaces. In this paper, its performance as a statistical sampling and function integration method is compared to that of Latin-Hypercube Sampling (LHS) and Simple Random Sampling (SRS) Monte Carlo methods, and Halton and Hammersley quasi-Monte-Carlo sequence methods. Specifically, sampling efficiencies are compared for function integration and for resolving various statistics of response in a 2-D test problem. It is found that on balance CVT performs best of all these sampling methods on our test problems.

More Details
6 Results
6 Results