Publications

Results 1–50 of 147
Skip to search filters

FROSch PRECONDITIONERS FOR LAND ICE SIMULATIONS OF GREENLAND AND ANTARCTICA

SIAM Journal on Scientific Computing

Heinlein, Alexander; Perego, Mauro P.; Rajamanickam, Sivasankaran R.

Numerical simulations of Greenland and Antarctic ice sheets involve the solution of large-scale highly nonlinear systems of equations on complex shallow geometries. This work is concerned with the construction of Schwarz preconditioners for the solution of the associated tangent problems, which are challenging for solvers mainly because of the strong anisotropy of the meshes and wildly changing boundary conditions that can lead to poorly constrained problems on large portions of the domain. Here, two-level generalized Dryja-Smith-Widlund (GDSW)-type Schwarz preconditioners are applied to different land ice problems, i.e., a velocity problem, a temperature problem, as well as the coupling of the former two problems. We employ the message passing interface (MPI)- parallel implementation of multilevel Schwarz preconditioners provided by the package FROSch (fast and robust Schwarz) from the Trilinos library. The strength of the proposed preconditioner is that it yields out-of-the-box scalable and robust preconditioners for the single physics problems. To the best of our knowledge, this is the first time two-level Schwarz preconditioners have been applied to the ice sheet problem and a scalable preconditioner has been used for the coupled problem. The preconditioner for the coupled problem differs from previous monolithic GDSW preconditioners in the sense that decoupled extension operators are used to compute the values in the interior of the subdomains. Several approaches for improving the performance, such as reuse strategies and shared memory OpenMP parallelization, are explored as well. In our numerical study we target both uniform meshes of varying resolution for the Antarctic ice sheet as well as nonuniform meshes for the Greenland ice sheet. We present several weak and strong scaling studies confirming the robustness of the approach and the parallel scalability of the FROSch implementation. Among the highlights of the numerical results are a weak scaling study for up to 32 K processor cores (8 K MPI ranks and 4 OpenMP threads) and 566 M degrees of freedom for the velocity problem as well as a strong scaling study for up to 4 K processor cores (and MPI ranks) and 68 M degrees of freedom for the coupled problem.

More Details

An optimization-based strategy for peridynamic-FEM coupling and for the prescription of nonlocal boundary conditions

D'Elia, Marta D.; Bochev, Pavel B.; Perego, Mauro P.; Trageser, Jeremy T.; Littlewood, David J.

We develop and analyze an optimization-based method for the coupling of a static peridynamic (PD) model and a static classical elasticity model. The approach formulates the coupling as a control problem in which the states are the solutions of the PD and classical equations, the objective is to minimize their mismatch on an overlap of the PD and classical domains, and the controls are virtual volume constraints and boundary conditions applied at the local-nonlocal interface. Our numerical tests performed on three-dimensional geometries illustrate the consistency and accuracy of our method, its numerical convergence, and its applicability to realistic engineering geometries. We demonstrate the coupling strategy as a means to reduce computational expense by confining the nonlocal model to a subdomain of interest, and as a means to transmit local (e.g., traction) boundary conditions applied at a surface to a nonlocal model in the bulk of the domain.

More Details

FROSch Preconditioners for Land Ice Simulations of Greenland and Antarctica

Heinlein, Alexander H.; Perego, Mauro P.; Rajamanickam, Sivasankaran R.

Numerical simulations of Greenland and Antarctic ice sheets involve the solution of large-scale highly nonlinear systems of equations on complex shallow geometries. This work is concerned with the construction of Schwarz preconditioners for the solution of the associated tangent problems, which are challenging for solvers mainly because of the strong anisotropy of the meshes and wildly changing boundary conditions that can lead to poorly constrained problems on large portions of the domain. Here, two-level GDSW (Generalized Dryja–Smith–Widlund) type Schwarz preconditioners are applied to different land ice problems, i.e., a velocity problem, a temperature problem, as well as the coupling of the former two problems. We employ the MPI-parallel implementation of multi-level Schwarz preconditioners provided by the package FROSch (Fast and Robust Schwarz)from the Trilinos library. The strength of the proposed preconditioner is that it yields out-of-the-box scalable and robust preconditioners for the single physics problems. To our knowledge, this is the first time two-level Schwarz preconditioners are applied to the ice sheet problem and a scalable preconditioner has been used for the coupled problem. The pre-conditioner for the coupled problem differs from previous monolithic GDSW preconditioners in the sense that decoupled extension operators are used to compute the values in the interior of the sub-domains. Several approaches for improving the performance, such as reuse strategies and shared memory OpenMP parallelization, are explored as well. In our numerical study we target both uniform meshes of varying resolution for the Antarctic ice sheet as well as non uniform meshes for the Greenland ice sheet are considered. We present several weak and strong scaling studies confirming the robustness of the approach and the parallel scalability of the FROSch implementation. Among the highlights of the numerical results are a weak scaling study for up to 32 K processor cores (8 K MPI-ranks and 4 OpenMP threads) and 566 M degrees of freedom for the velocity problem as well as a strong scaling study for up to 4 K processor cores (and MPI-ranks) and 68 M degrees of freedom for the coupled problem.

More Details

Optimization-based, property-preserving finite element methods for scalar advection equations and their connection to Algebraic Flux Correction

Computer Methods in Applied Mechanics and Engineering

Bochev, Pavel B.; Ridzal, Denis R.; D'Elia, Marta D.; Perego, Mauro P.; Peterson, Kara J.

This paper continues our efforts to exploit optimization and control ideas as a common foundation for the development of property-preserving numerical methods. Here we focus on a class of scalar advection equations whose solutions have fixed mass in a given Eulerian region and constant bounds in any Lagrangian volume. Our approach separates discretization of the equations from the preservation of their solution properties by treating the latter as optimization constraints. This relieves the discretization process from having to comply with additional restrictions and makes stability and accuracy the sole considerations in its design. A property-preserving solution is then sought as a state that minimizes the distance to an optimally accurate but not property-preserving target solution computed by the scheme, subject to constraints enforcing discrete proxies of the desired properties. We consider two such formulations in which the optimization variables are given by the nodal solution values and suitably defined nodal fluxes, respectively. A key result of the paper reveals that a standard Algebraic Flux Correction (AFC) scheme is a modified version of the second formulation obtained by shrinking its feasible set to a hypercube. We conclude with numerical studies illustrating the optimization-based formulations and comparing them with AFC.

More Details

A conservative, consistent, and scalable meshfree mimetic method

Journal of Computational Physics

Trask, Nathaniel A.; Bochev, Pavel B.; Perego, Mauro P.

Mimetic methods discretize divergence by restricting the Gauss theorem to mesh cells. Because point clouds lack such geometric entities, construction of a compatible meshfree divergence remains a challenge. In this work, we define an abstract Meshfree Mimetic Divergence (MMD) operator on point clouds by contraction of field and virtual face moments. This MMD satisfies a discrete divergence theorem, provides a discrete local conservation principle, and is first-order accurate. We consider two MMD instantiations. The first one assumes a background mesh and uses generalized moving least squares (GMLS) to obtain the necessary field and face moments. This MMD instance is appropriate for settings where a mesh is available but its quality is insufficient for a robust and accurate mesh-based discretization. The second MMD operator retains the GMLS field moments but defines virtual face moments using computationally efficient weighted graph-Laplacian equations. This MMD instance does not require a background grid and is appropriate for applications where mesh generation creates a computational bottleneck. It allows one to trade an expensive mesh generation problem for a scalable algebraic one, without sacrificing compatibility with the divergence operator. We demonstrate the approach by using the MMD operator to obtain a virtual finite-volume discretization of conservation laws on point clouds. Numerical results in the paper confirm the mimetic properties of the method and show that it behaves similarly to standard finite volume methods.

More Details

Mesh-Hardened Finite Element Analysis Through a Generalized Moving Least-Squares Approximation of Variational Problems

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Bochev, Pavel B.; Trask, N.; Kuberry, Paul A.; Perego, Mauro P.

In most finite element methods the mesh is used to both represent the domain and to define the finite element basis. As a result the quality of such methods is tied to the quality of the mesh and may suffer when the latter deteriorates. This paper formulates an alternative approach, which separates the discretization of the domain, i.e., the meshing, from the discretization of the PDE. The latter is accomplished by extending the Generalized Moving Least-Squares (GMLS) regression technique to approximation of bilinear forms and using the mesh only for the integration of the GMLS polynomial basis. Our approach yields a non-conforming discretization of the weak equations that can be handled by standard discontinuous Galerkin or interior penalty terms.

More Details

Compatible Particle Discretizations. Final LDRD Report

Bochev, Pavel B.; Bosler, Peter A.; Kuberry, Paul A.; Perego, Mauro P.; Peterson, Kara J.; Trask, Nathaniel A.

This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.

More Details

A parallel graph algorithm for detecting mesh singularities in distributed memory ice sheet simulations

ACM International Conference Proceeding Series

Bogle, Ian; Devine, Karen D.; Perego, Mauro P.; Rajamanickam, Sivasankaran R.; Slota, George M.

We present a new, distributed-memory parallel algorithm for detection of degenerate mesh features that can cause singularities in ice sheet mesh simulations. Identifying and removing mesh features such as disconnected components (icebergs) or hinge vertices (peninsulas of ice detached from the land) can significantly improve the convergence of iterative solvers. Because the ice sheet evolves during the course of a simulation, it is important that the detection algorithm can run in situ with the simulation - - running in parallel and taking a negligible amount of computation time - - so that degenerate features (e.g., calving icebergs) can be detected as they develop. We present a distributed memory, BFS-based label-propagation approach to degenerate feature detection that is efficient enough to be called at each step of an ice sheet simulation, while correctly identifying all degenerate features of an ice sheet mesh. Our method finds all degenerate features in a mesh with 13 million vertices in 0.0561 seconds on 1536 cores in the MPAS Albany Land Ice (MALI) model. Compared to the previously used serial pre-processing approach, we observe a 46,000x speedup for our algorithm, and provide additional capability to do dynamic detection of degenerate features in the simulation.

More Details

Description and evaluation of the Community Ice Sheet Model (CISM) v2.1

Geoscientific Model Development

Lipscomb, William H.; Price, Stephen F.; Hoffman, Matthew J.; Leguy, Gunter R.; Bennett, Andrew R.; Bradley, Sarah L.; Evans, Katherine J.; Fyke, Jeremy G.; Kennedy, Joseph H.; Perego, Mauro P.; Ranken, Douglas M.; Sacks, William J.; Salinger, Andrew G.; Vargo, Lauren J.; Worley, Patrick H.

We describe and evaluate version 2.1 of the Community Ice Sheet Model (CISM). CISM is a parallel, 3-D thermomechanical model, written mainly in Fortran, that solves equations for the momentum balance and the thickness and temperature evolution of ice sheets. CISM's velocity solver incorporates a hierarchy of Stokes flow approximations, including shallow-shelf, depth-integrated higher order, and 3-D higher order. CISM also includes a suite of test cases, links to third-party solver libraries, and parameterizations of physical processes such as basal sliding, iceberg calving, and sub-ice-shelf melting. The model has been verified for standard test problems, including the Ice Sheet Model Intercomparison Project for Higher-Order Models (ISMIP-HOM) experiments, and has participated in the initMIP-Greenland initialization experiment. In multimillennial simulations with modern climate forcing on a 4 km grid, CISM reaches a steady state that is broadly consistent with observed flow patterns of the Greenland ice sheet. CISM has been integrated into version 2.0 of the Community Earth System Model, where it is being used for Greenland simulations under past, present, and future climates. The code is open-source with extensive documentation and remains under active development.

More Details

Optimization-based coupling of local and nonlocal models: Applications to Peridynamics

Handbook of Nonlocal Continuum Mechanics for Materials and Structures

D'Elia, Marta D.; Bochev, Pavel B.; Littlewood, David J.; Perego, Mauro P.

Nonlocal continuum theories for mechanics can capture strong nonlocal effects due to long-range forces in their governing equations. When these effects cannot be neglected, nonlocal models are more accurate than partial differential equations (PDEs); however, the accuracy comes at the price of a prohibitive computational cost, making local-to-nonlocal (LtN) coupling strategies mandatory. In this chapter, we review the state of the art of LtN methods where the efficiency of PDEs is combined with the accuracy of nonlocal models. Then, we focus on optimization-based coupling strategies that couch the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. The strategy is described in the context of nonlocal and local elasticity and illustrated by numerical tests on three-dimensional realistic geometries. Additional numerical tests also prove the consistency of the method via patch tests.

More Details
Results 1–50 of 147
Results 1–50 of 147