Publications

Results 1–25 of 90
Skip to search filters

Higher-order particle representation for particle-in-cell simulations

Journal of Computational Physics

Brown, Dominic A.S.; Bettencourt, Matthew T.; Wright, Steven A.; Maheswaran, Satheesh; Jones, John P.; Jarvis, Stephen A.

In this paper we present an alternative approach to the representation of simulation particles for unstructured electrostatic and electromagnetic PIC simulations. In our modified PIC algorithm we represent particles as having a smooth shape function limited by some specified finite radius, r0. A unique feature of our approach is the representation of this shape by surrounding simulation particles with a set of virtual particles with delta shape, with fixed offsets and weights derived from Gaussian quadrature rules and the value of r0. As the virtual particles are purely computational, they provide the additional benefit of increasing the arithmetic intensity of traditionally memory bound particle kernels. The modified algorithm is implemented within Sandia National Laboratories' unstructured EMPIRE-PIC code, for electrostatic and electromagnetic simulations, using periodic boundary conditions. We show results for a representative set of benchmark problems, including electron orbit, a transverse electromagnetic wave propagating through a plasma, numerical heating, and a plasma slab expansion. Good error reduction across all of the chosen problems is achieved as the particles are made progressively smoother, with the optimal particle radius appearing to be problem-dependent.

More Details

Higher-order particle representation for particle-in-cell simulations

Journal of Computational Physics

Bettencourt, Matthew T.

In this paper we present an alternative approach to the representation of simulation particles for unstructured electrostatic and electromagnetic PIC simulations. In our modified PIC algorithm we represent particles as having a smooth shape function limited by some specified finite radius, r0. A unique feature of our approach is the representation of this shape by surrounding simulation particles with a set of virtual particles with delta shape, with fixed offsets and weights derived from Gaussian quadrature rules and the value of r0. As the virtual particles are purely computational, they provide the additional benefit of increasing the arithmetic intensity of traditionally memory bound particle kernels. The modified algorithm is implemented within Sandia National Laboratories' unstructured EMPIRE-PIC code, for electrostatic and electromagnetic simulations, using periodic boundary conditions. We show results for a representative set of benchmark problems, including electron orbit, a transverse electromagnetic wave propagating through a plasma, numerical heating, and a plasma slab expansion. In this work, good error reduction across all of the chosen problems is achieved as the particles are made progressively smoother, with the optimal particle radius appearing to be problem-dependent.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

EMPIRE-PIC: A performance portable unstructured particle-in-cell code

Communications in Computational Physics

Bettencourt, Matthew T.; Brown, Dominic A.S.; Cartwright, Keith L.; Cyr, Eric C.; Glusa, Christian A.; Lin, Paul T.; Moore, Stan G.; McGregor, Duncan A.O.; Pawlowski, Roger P.; Phillips, Edward G.; Roberts, Nathan V.; Wright, Steven A.; Maheswaran, Satheesh; Jones, John P.; Jarvis, Stephen A.

In this paper we introduce EMPIRE-PIC, a finite element method particle-in-cell (FEM-PIC) application developed at Sandia National Laboratories. The code has been developed in C++ using the Trilinos library and the Kokkos Performance Portability Framework to enable running on multiple modern compute architectures while only requiring maintenance of a single codebase. EMPIRE-PIC is capable of solving both electrostatic and electromagnetic problems in two- and three-dimensions to second-order accuracy in space and time. In this paper we validate the code against three benchmark problems - a simple electron orbit, an electrostatic Langmuir wave, and a transverse electromagnetic wave propagating through a plasma. We demonstrate the performance of EMPIRE-PIC on four different architectures: Intel Haswell CPUs, Intel's Xeon Phi Knights Landing, ARM Thunder-X2 CPUs, and NVIDIA Tesla V100 GPUs attached to IBM POWER9 processors. This analysis demonstrates scalability of the code up to more than two thousand GPUs, and greater than one hundred thousand CPUs.

More Details
Results 1–25 of 90
Results 1–25 of 90