Publications

3 Results
Skip to search filters

Arsenic ion implant energy effects on CMOS gate oxide hardness

Proposed for publication in the IEEE Transactions on Nuclear Science.

Draper, Bruce L.; Shaneyfelt, Marty R.; Young, Ralph W.; Headley, Thomas J.; Dondero, Richard D.

Under conditions that were predicted as 'safe' by well-established TCAD packages, radiation hardness can still be significantly degraded by a few lucky arsenic ions reaching the gate oxide during self-aligned CMOS source/drain ion implantation. The most likely explanation is that both oxide traps and interface traps are created when ions penetrate and damage the gate oxide after channeling or traveling along polysilicon grain boundaries during the implantation process.

More Details

Mechanisms for radiation dose-rate sensitivity of bipolar transistors

Hjalmarson, Harold P.; Hjalmarson, Harold P.; Shaneyfelt, Marty R.; Schwank, James R.; Edwards, Arthur H.; Hembree, Charles E.; Mattsson, Thomas M.

Mechanisms for enhanced low-dose-rate sensitivity are described. In these mechanisms, bimolecular reactions dominate the kinetics at high dose rates thereby causing a sub-linear dependence on total dose, and this leads to a dose-rate dependence. These bimolecular mechanisms include electron-hole recombination, hydrogen recapture at hydrogen source sites, and hydrogen dimerization to form hydrogen molecules. The essence of each of these mechanisms is the dominance of the bimolecular reactions over the radiolysis reaction at high dose rates. However, at low dose rates, the radiolysis reaction dominates leading to a maximum effect of the radiation.

More Details
3 Results
3 Results