Adaptive Space-Time Methods for Large Scale Optimal Design
When modeling complex physical systems with advanced dynamics, such as shocks and singularities, many classic methods for solving partial differential equations can return inaccurate or unusable results. One way to resolve these complex dynamics is through r-adaptive refinement methods, in which a fixed number of mesh points are shifted to areas of high interest. The mesh refinement map can be found through the solution of the Monge-Ampére equation, a highly nonlinear partial differential equation. Due to its nonlinearity, the numerical solution of the Monge-Ampére equation is nontrivial and has previously required computationally expensive methods. In this report, we detail our novel optimization-based, multigrid-enabled solver for a low-order finite element approximation of the Monge-Ampére equation. This fast and scalable solver makes r-adaptive meshing more readily available for problems related to large-scale optimal design. Beyond mesh adaptivity, our report discusses additional applications where our fast solver for the Monge-Ampére equation could be easily applied.