Publications

3 Results
Skip to search filters

Adaptive Space-Time Methods for Large Scale Optimal Design

DiPietro, Kelsey L.; Ridzal, Denis R.; Morales, Diana M.

When modeling complex physical systems with advanced dynamics, such as shocks and singularities, many classic methods for solving partial differential equations can return inaccurate or unusable results. One way to resolve these complex dynamics is through r-adaptive refinement methods, in which a fixed number of mesh points are shifted to areas of high interest. The mesh refinement map can be found through the solution of the Monge-Ampére equation, a highly nonlinear partial differential equation. Due to its nonlinearity, the numerical solution of the Monge-Ampére equation is nontrivial and has previously required computationally expensive methods. In this report, we detail our novel optimization-based, multigrid-enabled solver for a low-order finite element approximation of the Monge-Ampére equation. This fast and scalable solver makes r-adaptive meshing more readily available for problems related to large-scale optimal design. Beyond mesh adaptivity, our report discusses additional applications where our fast solver for the Monge-Ampére equation could be easily applied.

More Details

Pattern formation in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations

Journal of Theoretical Biology

Paquin-Lefebvre, Frédéric; Xu, Bin; DiPietro, Kelsey L.; Lindsay, Alan E.; Jilkine, Alexandra

Reaction-diffusion systems have been widely used to study spatio-temporal phenomena in cell biology, such as cell polarization. Coupled bulk-surface models naturally include compartmentalization of cytosolic and membrane-bound polarity molecules. Here we study the distribution of the polarity protein Cdc42 in a mass-conserved membrane-bulk model, and explore the effects of diffusion and spatial dimensionality on spatio-temporal pattern formation. We first analyze a one-dimensional (1-D) model for Cdc42 oscillations in fission yeast, consisting of two diffusion equations in the bulk domain coupled to nonlinear ODEs for binding kinetics at each end of the cell. In 1-D, our analysis reveals the existence of symmetric and asymmetric steady states, as well as anti-phase relaxation oscillations typical of slow-fast systems. We then extend our analysis to a two-dimensional (2-D) model with circular bulk geometry, for which species can either diffuse inside the cell or become bound to the membrane and undergo a nonlinear reaction-diffusion process. We also consider a nonlocal system of PDEs approximating the dynamics of the 2-D membrane-bulk model in the limit of fast bulk diffusion. In all three model variants we find that mass conservation selects perturbations of spatial modes that simply redistribute mass. In 1-D, only anti-phase oscillations between the two ends of the cell can occur, and in-phase oscillations are excluded. In higher dimensions, no radially symmetric oscillations are observed. Instead, the only instabilities are symmetry-breaking, either corresponding to stationary Turing instabilities, leading to the formation of stationary patterns, or to oscillatory Turing instabilities, leading to traveling and standing waves. Codimension-two Bogdanov–Takens bifurcations occur when the two distinct instabilities coincide, causing traveling waves to slow down and to eventually become stationary patterns. Our work clarifies the effect of geometry and dimensionality on behaviors observed in mass-conserved cell polarity models.

More Details
3 Results
3 Results