For decades, Arctic temperatures have increased twice as fast as average global temperatures. As a first step towards quantifying parametric uncertainty in Arctic climate, we performed a variance-based global sensitivity analysis (GSA) using a fully-coupled, ultra-low resolution (ULR) configuration of version 1 of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SMv1). Specifically, we quantified the sensitivity of six quantities of interest (QOIs), which characterize changes in Arctic climate over a 75 year period, to uncertainties in nine model parameters spanning the sea ice, atmosphere and ocean components of E3SMv1. Sensitivity indices for each QOI were computed with a Gaussian process emulator using 139 random realizations of the random parameters and fixed pre-industrial forcing. Uncertainties in the atmospheric parameters in the CLUBB (Cloud Layers Unified by Binormals) scheme were found to have the most impact on sea ice status and the larger Arctic climate. Our results demonstrate the importance of conducting sensitivity analyses with fully coupled climate models. The ULR configuration makes such studies computationally feasible today due to its low computational cost. When advances in computational power and modeling algorithms enable the tractable use of higher-resolution models, our results will provide a baseline that can quantify the impact of model resolution on the accuracy of sensitivity indices. Moreover, the confidence intervals provided by our study, which we used to quantify the impact of the number of model evaluations on the accuracy of sensitivity estimates, have the potential to inform the computational resources needed for future sensitivity studies.
We use a nascent data-driven causal discovery method to find and compare causal relationships in observed data and climate model output. We consider ten different features in the Arctic climate collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. In identifying and analyzing the resulting causal networks, we make meaningful comparisons between observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI causal discovery algorithm to Arctic climate data, that there are noticeable similarities between observed and simulated Arctic climate dynamics, and that further work is needed to identify specific areas for improvement to better align models with natural observations.
Component coupling is a crucial part of climate models, such as DOE's E3SM (Caldwell et al., 2019). A common coupling strategy in climate models is for their components to exchange flux data from the previous time-step. This approach effectively performs a single step of an iterative solution method for the monolithic coupled system, which may lead to instabilities and loss of accuracy. In this paper we formulate an Interface-Flux-Recovery (IFR) coupling method which improves upon the conventional coupling techniques in climate models. IFR starts from a monolithic formulation of the coupled discrete problem and then uses a Schur complement to obtain an accurate approximation of the flux across the interface between the model components. This decouples the individual components and allows one to solve them independently by using schemes that are optimized for each component. To demonstrate the feasibility of the method, we apply IFR to a simplified ocean–atmosphere model for heat-exchange coupled through the so-called bulk condition, common in ocean–atmosphere systems. We then solve this model on matching and non-matching grids to estimate numerically the convergence rates of the IFR coupling scheme.
This paper continues our efforts to exploit optimization and control ideas as a common foundation for the development of property-preserving numerical methods. Here we focus on a class of scalar advection equations whose solutions have fixed mass in a given Eulerian region and constant bounds in any Lagrangian volume. Our approach separates discretization of the equations from the preservation of their solution properties by treating the latter as optimization constraints. This relieves the discretization process from having to comply with additional restrictions and makes stability and accuracy the sole considerations in its design. A property-preserving solution is then sought as a state that minimizes the distance to an optimally accurate but not property-preserving target solution computed by the scheme, subject to constraints enforcing discrete proxies of the desired properties. We consider two such formulations in which the optimization variables are given by the nodal solution values and suitably defined nodal fluxes, respectively. A key result of the paper reveals that a standard Algebraic Flux Correction (AFC) scheme is a modified version of the second formulation obtained by shrinking its feasible set to a hypercube. We conclude with numerical studies illustrating the optimization-based formulations and comparing them with AFC.
Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
We present an optimization approach with two controls for coupling elliptic partial differential equations posed on subdomains sharing an interface that is discretized independently on each subdomain, introducing gaps and overlaps. We use two virtual Neumann controls, one defined on each discrete interface, thereby eliminating the need for a virtual common refinement interface mesh. Global flux conservation is achieved by including the square of the difference of the total flux on each interface in the objective. We use Generalized Moving Least Squares (GMLS) reconstruction to evaluate and compare the subdomain solution and gradients at quadrature points used in the cost functional. The resulting method recovers globally linear solutions and shows optimal L2-norm and H1-norm convergence.
This report summarizes the work performed under a three year LDRD project aiming to develop mathematical and software foundations for compatible meshfree and particle discretizations. We review major technical accomplishments and project metrics such as publications, conference and colloquia presentations and organization of special sessions and minisimposia. The report concludes with a brief summary of ongoing projects and collaborations that utilize the products of this work.