Publications

5 Results
Skip to search filters

Using after-action review based on automated performance assessment to enhance training effectiveness

Adams, Susan S.; Basilico, Justin D.; Abbott, Robert G.

Training simulators have become increasingly popular tools for instructing humans on performance in complex environments. However, the question of how to provide individualized and scenario-specific assessment and feedback to students remains largely an open question. In this work, we follow-up on previous evaluations of the Automated Expert Modeling and Automated Student Evaluation (AEMASE) system, which automatically assesses student performance based on observed examples of good and bad performance in a given domain. The current study provides a rigorous empirical evaluation of the enhanced training effectiveness achievable with this technology. In particular, we found that students given feedback via the AEMASE-based debrief tool performed significantly better than students given only instructor feedback on two out of three domain-specific performance metrics.

More Details

Performance assessment to enhance training effectiveness

Adams, Susan S.; Basilico, Justin D.; Abbott, Robert G.

Training simulators have become increasingly popular tools for instructing humans on performance in complex environments. However, the question of how to provide individualized and scenario-specific assessment and feedback to students remains largely an open question. To maximize training efficiency, new technologies are required that assist instructors in providing individually relevant instruction. Sandia National Laboratories has shown the feasibility of automated performance assessment tools, such as the Sandia-developed Automated Expert Modeling and Student Evaluation (AEMASE) software, through proof-of-concept demonstrations, a pilot study, and an experiment. In the pilot study, the AEMASE system, which automatically assesses student performance based on observed examples of good and bad performance in a given domain, achieved a high degree of agreement with a human grader (89%) in assessing tactical air engagement scenarios. In more recent work, we found that AEMASE achieved a high degree of agreement with human graders (83-99%) for three Navy E-2 domain-relevant performance metrics. The current study provides a rigorous empirical evaluation of the enhanced training effectiveness achievable with this technology. In particular, we assessed whether giving students feedback based on automated metrics would enhance training effectiveness and improve student performance. We trained two groups of employees (differentiated by type of feedback) on a Navy E-2 simulator and assessed their performance on three domain-specific performance metrics. We found that students given feedback via the AEMASE-based debrief tool performed significantly better than students given only instructor feedback on two out of three metrics. Future work will focus on extending these developments for automated assessment of teamwork.

More Details

Enabling immersive simulation

Abbott, Robert G.; Basilico, Justin D.; Glickman, Matthew R.; Hart, Derek H.; Whetzel, Jonathan H.

The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

More Details

Yucca Mountain licensing support network archive assistant

Dunlavy, Daniel D.; Basilico, Justin D.; Verzi, Stephen J.; Bauer, Travis L.

This report describes the Licensing Support Network (LSN) Assistant--a set of tools for categorizing e-mail messages and documents, and investigating and correcting existing archives of categorized e-mail messages and documents. The two main tools in the LSN Assistant are the LSN Archive Assistant (LSNAA) tool for recategorizing manually labeled e-mail messages and documents and the LSN Realtime Assistant (LSNRA) tool for categorizing new e-mail messages and documents. This report focuses on the LSNAA tool. There are two main components of the LSNAA tool. The first is the Sandia Categorization Framework, which is responsible for providing categorizations for documents in an archive and storing them in an appropriate Categorization Database. The second is the actual user interface, which primarily interacts with the Categorization Database, providing a way for finding and correcting categorizations errors in the database. A procedure for applying the LSNAA tool and an example use case of the LSNAA tool applied to a set of e-mail messages are provided. Performance results of the categorization model designed for this example use case are presented.

More Details
5 Results
5 Results