Publications

Results 1–25 of 34
Skip to search filters

Using additive manufacturing as a pathway to change the qualification paradigm

Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018

Roach, R.A.; Bishop, Joseph E.; Johnson, Kyle J.; Rodgers, Theron R.; Boyce, B.L.; Swiler, L.; van Bloemen Waanders, Bart G.; Chandross, M.; Kammler, Daniel K.; Balch, Dorian K.; Jared, B.; Martinez, Mario J.; Leathe, Nicholas L.; Ford, K.

Additive Manufacturing (AM) offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this paper.

More Details

Adaptive wavelet compression of large additive manufacturing experimental and simulation datasets

Computational Mechanics

Salloum, Maher S.; Johnson, Kyle J.; Bishop, Joseph E.; Aytac, Jon M.; Dagel, Daryl D.; van Bloemen Waanders, Bart G.

New manufacturing technologies such as additive manufacturing require research and development to minimize the uncertainties in the produced parts. The research involves experimental measurements and large simulations, which result in huge quantities of data to store and analyze. We address this challenge by alleviating the data storage requirements using lossy data compression. We select wavelet bases as the mathematical tool for compression. Unlike images, additive manufacturing data is often represented on irregular geometries and unstructured meshes. Thus, we use Alpert tree-wavelets as bases for our data compression method. We first analyze different basis functions for the wavelets and find the one that results in maximal compression and miminal error in the reconstructed data. We then devise a new adaptive thresholding method that is data-agnostic and allows a priori estimation of the reconstruction error. Finally, we propose metrics to quantify the global and local errors in the reconstructed data. One of the error metrics addresses the preservation of physical constraints in reconstructed data fields, such as divergence-free stress field in structural simulations. While our compression and decompression method is general, we apply it to both experimental and computational data obtained from measurements and thermal/structural modeling of the sintering of a hollow cylinder from metal powders using a Laser Engineered Net Shape process. The results show that monomials achieve optimal compression performance when used as wavelet bases. The new thresholding method results in compression ratios that are two to seven times larger than the ones obtained with commonly used thresholds. Overall, adaptive Alpert tree-wavelets can achieve compression ratios between one and three orders of magnitude depending on the features in the data that are required to preserve. These results show that Alpert tree-wavelet compression is a viable and promising technique to reduce the size of large data structures found in both experiments and simulations.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Data Analysis for the Born Qualified Grand LDRD Project

Swiler, Laura P.; van Bloemen Waanders, Bart G.; Jared, Bradley H.; Koepke, Joshua R.; Whetten, Shaun R.; Madison, Jonathan D.; Ivanoff, Thomas I.; Jackson, Olivia D.; Cook, Adam W.; Brown-Shaklee, Harlan J.; Kammler, Daniel K.; Johnson, Kyle J.; Ford, Kurtis R.; Bishop, Joseph E.; Roach, R.A.

This report summarizes the data analysis activities that were performed under the Born Qualified Grand Challenge Project from 2016 - 2018. It is meant to document the characterization of additively manufactured parts and processe s for this project as well as demonstrate and identify further analyses and data science that could be done relating material processes to microstructure to properties to performance.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error

JOM

Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.; Littlewood, David J.; Baines, Andrew J.

Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.

More Details

Implementation and verification of RKPM in the sierra/solidmechanics analysis code

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Littlewood, David J.; Hillman, Mike; Yreux, Edouard; Bishop, Joseph E.; Beckwith, Frank; Chen, Jiun S.

The reproducing kernel particle method (RKPM) is a meshfree method for computational solid mechanics that can be tailored for an arbitrary order of completeness and smoothness. The primary advantage of RKPM relative to standard finiteelement (FE) approaches is its capacity to model large deformations, material damage, and fracture. Additionally, the use of a meshfree approach offers great flexibility in the domain discretization process and reduces the complexity of mesh modifications such as adaptive refinement. We present an overview of the RKPM implementation in the Sierra/SolidMechanics analysis code, with a focus on verification, validation, and software engineering for massively parallel computation. Key details include the processing of meshfree discretizations within a FE code, RKPM solution approximation and domain integration, stress update and calculation of internal force, and contact modeling. The accuracy and performance of RKPM are evaluated using a set of benchmark problems. Solution verification, mesh convergence, and parallel scalability are demonstrated using a simulation of wave propagation along the length of a bar. Initial model validation is achieved through simulation of a Taylor bar impact test. The RKPM approach is shown to be a viable alternative to standard FE techniques that provides additional flexibility to the analyst community.

More Details

Computational thermal, chemical, fluid, and solid mechanics for geosystems management

Martinez, Mario J.; Red-Horse, John R.; Carnes, Brian C.; Mesh, Mikhail M.; Field, Richard V.; Davison, Scott M.; Yoon, Hongkyu Y.; Bishop, Joseph E.; Newell, Pania N.; Notz, Patrick N.; Turner, Daniel Z.; Subia, Samuel R.; Hopkins, Polly L.; Moffat, Harry K.; Jove Colon, Carlos F.; Dewers, Thomas D.; Klise, Katherine A.

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

More Details

Ductile failure X-prize

Boyce, Brad B.; Foulk, James W.; Littlewood, David J.; Mota, Alejandro M.; Ostien, Jakob O.; Silling, Stewart A.; Spencer, Benjamin S.; Wellman, Gerald W.; Bishop, Joseph E.; Brown, Arthur B.; Córdova, Theresa E.; Cox, James C.; Crenshaw, Thomas B.; Dion, Kristin D.; Emery, John M.

Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

More Details
Results 1–25 of 34
Results 1–25 of 34