This project created and demonstrated a framework for the efficient and accurate prediction of complex systems with only a limited amount of highly trusted data. These next generation computational multi-fidelity tools fuse multiple information sources of varying cost and accuracy to reduce the computational and experimental resources needed for designing and assessing complex multi-physics/scale/component systems. These tools have already been used to substantially improve the computational efficiency of simulation aided modeling activities from assessing thermal battery performance to predicting material deformation. This report summarizes the work carried out during a two year LDRD project. Specifically we present our technical accomplishments; project outputs such as publications, presentations and professional leadership activities; and the project’s legacy.
For decades, Arctic temperatures have increased twice as fast as average global temperatures. As a first step towards quantifying parametric uncertainty in Arctic climate, we performed a variance-based global sensitivity analysis (GSA) using a fully-coupled, ultra-low resolution (ULR) configuration of version 1 of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SMv1). Specifically, we quantified the sensitivity of six quantities of interest (QOIs), which characterize changes in Arctic climate over a 75 year period, to uncertainties in nine model parameters spanning the sea ice, atmosphere and ocean components of E3SMv1. Sensitivity indices for each QOI were computed with a Gaussian process emulator using 139 random realizations of the random parameters and fixed pre-industrial forcing. Uncertainties in the atmospheric parameters in the CLUBB (Cloud Layers Unified by Binormals) scheme were found to have the most impact on sea ice status and the larger Arctic climate. Our results demonstrate the importance of conducting sensitivity analyses with fully coupled climate models. The ULR configuration makes such studies computationally feasible today due to its low computational cost. When advances in computational power and modeling algorithms enable the tractable use of higher-resolution models, our results will provide a baseline that can quantify the impact of model resolution on the accuracy of sensitivity indices. Moreover, the confidence intervals provided by our study, which we used to quantify the impact of the number of model evaluations on the accuracy of sensitivity estimates, have the potential to inform the computational resources needed for future sensitivity studies.
PyApprox is a Python-based one-stop-shop for probabilistic analysis of scientific numerical models. Easy to use and extendable tools are provided for constructing surrogates, sensitivity analysis, Bayesian inference, experimental design, and forward uncertainty quantification. The algorithms implemented represent the most popular methods for model analysis developed over the past two decades, including recent advances in multi-fidelity approaches that use multiple model discretizations and/or simplified physics to significantly reduce the computational cost of various types of analyses. Simple interfaces are provided for the most commonly-used algorithms to limit a user’s need to tune the various hyper-parameters of each algorithm. However, more advanced work flows that require customization of hyper-parameters is also supported. An extensive set of Benchmarks from the literature is also provided to facilitate the easy comparison of different algorithms for a wide range of model analyses. This paper introduces PyApprox and its various features, and presents results demonstrating the utility of PyApprox on a benchmark problem modeling the advection of a tracer in ground water.
We present an adaptive algorithm for constructing surrogate models of multi-disciplinary systems composed of a set of coupled components. With this goal we introduce “coupling” variables with a priori unknown distributions that allow surrogates of each component to be built independently. Once built, the surrogates of the components are combined to form an integrated-surrogate that can be used to predict system-level quantities of interest at a fraction of the cost of the original model. The error in the integrated-surrogate is greedily minimized using an experimental design procedure that allocates the amount of training data, used to construct each component-surrogate, based on the contribution of those surrogates to the error of the integrated-surrogate. The multi-fidelity procedure presented is a generalization of multi-index stochastic collocation that can leverage ensembles of models of varying cost and accuracy, for one or more components, to reduce the computational cost of constructing the integrated-surrogate. Extensive numerical results demonstrate that, for a fixed computational budget, our algorithm is able to produce surrogates that are orders of magnitude more accurate than methods that treat the integrated system as a black-box.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder's risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.
Wang, Qian; Guillaume, Joseph H.A.; Jakeman, John D.; Yang, Tao; Iwanaga, Takuya; Croke, Barry; Jakeman, Anthony J.
Despite widespread use of factor fixing in environmental modeling, its effect on model predictions has received little attention and is instead commonly presumed to be negligible. We propose a proof-of-concept adaptive method for systematically investigating the impact of factor fixing. The method uses Global Sensitivity Analysis methods to identify groups of sensitive parameters, then quantifies which groups can be safely fixed at nominal values without exceeding a maximum acceptable error, demonstrated using the 21-dimensional Sobol’ G-function. Three error measures are considered for quantities of interest, namely Relative Mean Absolute Error, Pearson Product-Moment Correlation and Relative Variance. Results demonstrate that factor fixing may cause large errors in the model results unexpectedly, when preliminary analysis suggests otherwise, and that the default value selected affects the number of factors to fix. To improve the applicability and methodological development of factor fixing, a new research agenda encompassing five opportunities is discussed for further attention.
This paper describes an efficient reverse-mode differentiation algorithm for contraction operations for arbitrary and unconventional tensor network topologies. The approach leverages the tensor contraction tree of Evenbly and Pfeifer (2014), which provides an instruction set for the contraction sequence of a network. We show that this tree can be efficiently leveraged for differentiation of a full tensor network contraction using a recursive scheme that exploits (1) the bilinear property of contraction and (2) the property that trees have a single path from root to leaves. While differentiation of tensor-tensor contraction is already possible in most automatic differentiation packages, we show that exploiting these two additional properties in the specific context of contraction sequences can improve eficiency. Following a description of the algorithm and computational complexity analysis, we investigate its utility for gradient-based supervised learning for low-rank function recovery and for fitting real-world unstructured datasets. We demonstrate improved performance over alternating least-squares optimization approaches and the capability to handle heterogeneous and arbitrary tensor network formats. When compared to alternating minimization algorithms, we find that the gradient-based approach requires a smaller oversampling ratio (number of samples compared to number model parameters) for recovery. This increased efficiency extends to fitting unstructured data of varying dimensionality and when employing a variety of tensor network formats. Here, we show improved learning using the hierarchical Tucker method over the tensor-train in high-dimensional settings on a number of benchmark problems.
Constructing accurate statistical models of critical system responses typically requires an enormous amount of data from physical experiments or numerical simulations. Unfortunately, data generation is often expensive and time consuming. To streamline the data generation process, optimal experimental design determines the 'best' allocation of experiments with respect to a criterion that measures the ability to estimate some important aspect of an assumed statistical model. While optimal design has a vast literature, few researchers have developed design paradigms targeting tail statistics, such as quantiles. In this project, we tailored and extended traditional design paradigms to target distribution tails. Our approach included (i) the development of new optimality criteria to shape the distribution of prediction variances, (ii) the development of novel risk-adapted surrogate models that provably overestimate certain statistics including the probability of exceeding a threshold, and (iii) the asymptotic analysis of regression approaches that target tail statistics such as superquantile regression. To accompany our theoretical contributions, we released implementations of our methods for surrogate modeling and design of experiments in two complementary open source software packages, the ROL/OED Toolkit and PyApprox.
We present an adaptive algorithm for constructing surrogate models for integrated systems composed of a set of coupled components. With this goal we introduce ‘coupling’ variables with a priori unknown distributions that allow approximations of each component to be built independently. Once built, the surrogates of the components are combined and used to predict system-level quantities of interest (QoI) at a fraction of the cost of interrogating the full system model. We use a greedy experimental design procedure, based upon a modification of Multi-Index Stochastic Collocation (MISC), to minimize the error of the combined surrogate. This is achieved by refining each component surrogate in accordance with its relative contribution to error in the approximation of the system-level QoI. Our adaptation of MISC is a multi-fidelity procedure that can leverage ensembles of models of varying cost and accuracy, for one or more components, to produce estimates of system-level QoI. Several numerical examples demonstrate the efficacy of the proposed approach on systems involving feed-forward and feedback coupling. For a fixed computational budget, the proposed algorithm is able to produce approximations that are orders of magnitude more accurate than approximations that treat the integrated system as a black-box.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. We adopt a probabilistic description of risk that assigns probabilities to consequences associated with an event and use risk measures, which combine objective evidence with the subjective values of decision makers, to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical estimates obtained from the training data. These surrogate models not only limit over-confidence in reliability and safety assessments, but produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to the specific risk preferences of the stakeholder and then present an approach, based upon stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. The surrogate models introduce a bias that allows them to conservatively estimate the target risk measures. We provide theoretical results that show that this bias decays at the same rate as the L2 error in the surrogate model. Our numerical examples confirm that risk-aware surrogate models do indeed over-estimate the target risk measures while converging at the expected rate.
We present a numerical framework for recovering unknown nonautonomous dynamical systems with time-dependent inputs. To circumvent the difficulty presented by the nonautonomous nature of the system, our method transforms the solution state into piecewise integration of the system over a discrete set of time instances. The time-dependent inputs are then locally parameterized by using a proper model, for example, polynomial regression, in the pieces determined by the time instances. This transforms the original system into a piecewise parametric system that is locally time invariant. We then design a deep neural network structure to learn the local models. Once the network model is constructed, it can be iteratively used over time to conduct global system prediction. We provide theoretical analysis of our algorithm and present a number of numerical examples to demonstrate the effectiveness of the method.
Gaussian processes and other kernel-based methods are used extensively to construct approximations of multivariate data sets. The accuracy of these approximations is dependent on the data used. This paper presents a computationally efficient algorithm to greedily select training samples that minimize the weighted Lp error of kernel-based approximations for a given number of data. The method successively generates nested samples, with the goal of minimizing the error in high probability regions of densities specified by users. The algorithm presented is extremely simple and can be implemented using existing pivoted Cholesky factorization methods. Training samples are generated in batches which allows training data to be evaluated (labeled) in parallel. For smooth kernels, the algorithm performs comparably with the greedy integrated variance design but has significantly lower complexity. Numerical experiments demonstrate the efficacy of the approach for bounded, unbounded, multi-modal and non-tensor product densities. We also show how to use the proposed algorithm to efficiently generate surrogates for inferring unknown model parameters from data using Bayesian inference.