Publications

2 Results
Skip to search filters

Randomized Cholesky Preconditioning for Graph Partitioning Applications

Espinoza, Heliezer J.; Loe, Jennifer A.; Boman, Erik G.

Graph partitioning has emerged as an area of interest due to its use in various applications in computational research. One way to partition a graph is to solve for the eigenvectors of the corresponding graph Laplacian matrix. This project focuses on the eigensolver LOBPCG and the evaluation of a new preconditioner: Randomized Cholesky Factorization (rchol). This proconditioner was tested for its speed and accuracy against other well-known preconditioners for the method. After experiments were run on several known test matrices, rchol appears to be a better preconditioner for structured matrices. This research was sponsored by National Nuclear Security Administration Minority Serving Institutions Internship Program (NNSA-MSIIP) and completed at host facility Sandia National Laboratories. As such, after discussion of the research project itself, this report contains a brief reflection on experience gained as a result of participating in the NNSA-MSIIP.

More Details

Randomized Cholesky Preconditioning for Graph Partitioning Applications

Espinoza, Heliezer J.; Loe, Jennifer A.; Boman, Erik G.

A graph is a mathematical representation of a network; we say it consists of a set of vertices, which are connected by edges. Graphs have numerous applications in various fields, as they can model all sorts of connections, processes, or relations. For example, graphs can model intricate transit systems or the human nervous system. However, graphs that are large or complicated become difficult to analyze. This is why there is an increased interest in the area of graph partitioning, reducing the size of the graph into multiple partitions. For example, partitions of a graph representing a social network might help identify clusters of friends or colleagues. Graph partitioning is also a widely used approach to load balancing in parallel computing. The partitioning of a graph is extremely useful to decompose the graph into smaller parts and allow for easier analysis. There are different ways to solve graph partitioning problems. For this work, we focus on a spectral partitioning method which forms a partition based upon the eigenvectors of the graph Laplacian (details presented in Acer, et. al.). This method uses the LOBPCG algorithm to compute these eigenvectors. LOBPCG can be accelerated by an operator called a preconditioner. For this internship, we evaluate a randomized Cholesky (rchol) preconditioner for its effectiveness on graph partitioning problems with LOBPCG. We compare it with two standard preconditioners: Jacobi and Incomplete Cholesky (ichol). This research was conducted from August to December 2021 in conjunction with Sandia National Laboratories.

More Details
2 Results
2 Results