Publications

18 Results
Skip to search filters

Scalable generation of graphs for benchmarking HPC community-detection algorithms

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Slota, George M.; Berry, Jonathan W.; Hammond, Simon D.; Olivier, Stephen L.; Phillips, Cynthia A.; Rajamanickam, Sivasankaran R.

Community detection in graphs is a canonical social network analysis method. We consider the problem of generating suites of teras-cale synthetic social networks to compare the solution quality of parallel community-detection methods. The standard method, based on the graph generator of Lancichinetti, Fortunato, and Radicchi (LFR), has been used extensively for modest-scale graphs, but has inherent scalability limitations. We provide an alternative, based on the scalable Block Two-Level Erdos-Renyi (BTER) graph generator, that enables HPC-scale evaluation of solution quality in the style of LFR. Our approach varies community coherence, and retains other important properties. Our methods can scale real-world networks, e.g., to create a version of the Friendster network that is 512 times larger. With BTER's inherent scalability, we can generate a 15-terabyte graph (4.6B vertices, 925B edges) in just over one minute. We demonstrate our capability by showing that label-propagation community-detection algorithm can be strong-scaled with negligible solution-quality loss.

More Details

Multi-Level Memory Algorithmics for Large Sparse Problems

Berry, Jonathan W.; Butcher, Neil B.; Catalyurek, Umit V.; Kogge, Peter M.; Lin, Paul T.; Olivier, Stephen L.; Phillips, Cynthia A.; Rajamanickam, Sivasankaran R.; Slota, George M.; Voskuilen, Gwendolyn R.; Yasar, Abdurrahman Y.; Young, Jeffrey G.

In this report, we abstract eleven papers published during the project and describe preliminary unpublished results that warrant follow-up work. The topic is multi-level memory algorithmics, or how to effectively use multiple layers of main memory. Modern compute nodes all have this feature in some form.

More Details

A parallel graph algorithm for detecting mesh singularities in distributed memory ice sheet simulations

ACM International Conference Proceeding Series

Bogle, Ian; Devine, Karen D.; Perego, Mauro P.; Rajamanickam, Sivasankaran R.; Slota, George M.

We present a new, distributed-memory parallel algorithm for detection of degenerate mesh features that can cause singularities in ice sheet mesh simulations. Identifying and removing mesh features such as disconnected components (icebergs) or hinge vertices (peninsulas of ice detached from the land) can significantly improve the convergence of iterative solvers. Because the ice sheet evolves during the course of a simulation, it is important that the detection algorithm can run in situ with the simulation - - running in parallel and taking a negligible amount of computation time - - so that degenerate features (e.g., calving icebergs) can be detected as they develop. We present a distributed memory, BFS-based label-propagation approach to degenerate feature detection that is efficient enough to be called at each step of an ice sheet simulation, while correctly identifying all degenerate features of an ice sheet mesh. Our method finds all degenerate features in a mesh with 13 million vertices in 0.0561 seconds on 1536 cores in the MPAS Albany Land Ice (MALI) model. Compared to the previously used serial pre-processing approach, we observe a 46,000x speedup for our algorithm, and provide additional capability to do dynamic detection of degenerate features in the simulation.

More Details

High-Performance Graph Analytics on Manycore Processors

Proceedings - 2015 IEEE 29th International Parallel and Distributed Processing Symposium, IPDPS 2015

Slota, George M.; Rajamanickam, Sivasankaran R.; Madduri, Kamesh

The divergence in the computer architecture landscape has resulted in different architectures being considered mainstream at the same time. For application and algorithm developers, a dilemma arises when one must focus on using underlying architectural features to extract the best performance on each of these architectures, while writing portable code at the same time. We focus on this problem with graph analytics as our target application domain. In this paper, we present an abstraction-based methodology for performance-portable graph algorithm design on manicure architectures. We demonstrate our approach by systematically optimizing algorithms for the problems of breadth-first search, color propagation, and strongly connected components. We use Kokkos, a manicure library and programming model, for prototyping our algorithms. Our portable implementation of the strongly connected components algorithm on the NVIDIA Tesla K40M is up to 3.25× faster than a state-of-the-art parallel CPU implementation on a dual-socket Sandy Bridge compute node.

More Details

PuLP: Scalable multi-objective multi-constraint partitioning for small-world networks

Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014

Slota, George M.; Madduri, Kamesh; Rajamanickam, Sivasankaran R.

We present PuLP, a parallel and memory-efficient graph partitioning method specifically designed to partition low-diameter networks with skewed degree distributions. Graph partitioning is an important Big Data problem because it impacts the execution time and energy efficiency of graph analytics on distributed-memory platforms. Partitioning determines the in-memory layout of a graph, which affects locality, intertask load balance, communication time, and overall memory utilization of graph analytics. A novel feature of our method PuLP (Partitioning using Label Propagation) is that it optimizes for multiple objective metrics simultaneously, while satisfying multiple partitioning constraints. Using our method, we are able to partition a web crawl with billions of edges on a single compute server in under a minute. For a collection of test graphs, we show that PuLP uses 8-39× less memory than state-of-the-art partitioners and is up to 14.5× faster, on average, than alternate approaches (with 16-way parallelism). We also achieve better partitioning quality results for the multi-objective scenario.

More Details
18 Results
18 Results