Publications

8 Results
Skip to search filters

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Tim P.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details
8 Results
8 Results