Sierra/SM-ALEGRA Solution Import
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Generating finite-element meshes is a serious bottleneck for large parallel simulations. When mesh generation is limited to serial machines and element counts approach a billion, this bottleneck becomes a roadblock. Pamgen is a parallel mesh generation library that allows on-the-fly scalable generation of hexahedral and quadrilateral finite element meshes for several simple geometries. It has been used to generate more that 1.1 billion elements on 17,576 processors. Pamgen generates an unstructured finite element mesh on each processor at the start of a simulation. The mesh is specified by commands passed to the library as a 'C'-programming language string. The resulting mesh geometry, topology, and communication information can then be queried through an API. pamgen allows specification of boundary condition application regions using sidesets (element faces) and nodesets (collections of nodes). It supports several simple geometry types. It has multiple alternatives for mesh grading. It has several alternatives for the initial domain decomposition. Pamgen makes it easy to change details of the finite element mesh and is very useful for performance studies and scoping calculations.
Abstract not provided.
The success of Lagrangian contact modeling leads one to believe that important aspects of this capability may be used for multi-material modeling when only a portion of the simulation can be represented in a Lagrangian frame. We review current experience with two dual mesh technologies where one of these meshes is a Lagrangian mesh and the other is an Arbitrary Lagrangian/Eulerian (ALE) mesh. These methods are cast in the framework of an operator-split ALE algorithm where a Lagrangian step is followed by a remesh/remap step. An interface-coupled methodology is considered first. This technique is applicable to problems involving contact between materials of dissimilar compliance. The technique models the more compliant (soft) material as ALE while the less compliant (hard) material and associated interface are modeled in a Lagrangian fashion. Loads are transferred between the hard and soft materials via explicit transient dynamics contact algorithms. The use of these contact algorithms remove the requirement of node-tonode matching at the soft-hard interface. In the context of the operator-split ALE algorithm, a single Lagrangian step is performed using a mesh to mesh contact algorithm. At the end of the Lagrangian step the meshes will be slightly offset at the interface but non-interpenetrating. The ALE mesh nodes at the interface are then remeshed to their initial location relative to the Lagrangian body faces and the ALE mesh is smoothed, translated and rotated to follow Lagrangian body. Robust remeshing in the ALE region is required for success of this algorithm, and we describe current work in this area. The second method is an overlapping grid methodology that requires mapping of information between a Lagrangian mesh and an ALE mesh. The Lagrangian mesh describes a relatively hard body that interacts with softer material contained in the ALE mesh. A predicted solution for the velocity field is performed independently on both meshes. Element-centered velocity and momentum are transferred between the meshes using the volume transfer capability implemented in contact algorithms. Data from the ALE mesh is mapped to a phantom mesh that surrounds the Lagrangian mesh, providing for the reaction to the predicted motion of the Lagrangian material. Data from the Lagrangian mesh is mapped directly to the ALE mesh. A momentum balance is performed on both meshes to adjust the velocity field to account for the interaction of the material from the other mesh. Subsequent, remeshing and remapping of the ALE mesh is performed to allow large deformation of the softer material. We overview current progress using this approach and discuss avenues for future research and development.
ALEGRA is an arbitrary Lagrangian-Eulerian multi-material finite element code used for modeling solid dynamics problems involving large distortion and shock propagation. This document describes the basic user input language and instructions for using the software.
A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighbors using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.