Publications

21 Results
Skip to search filters

Network algorithms for information analysis using the Titan Toolkit

Wylie, Brian N.; Wilson, Andrew T.

The analysis of networked activities is dramatically more challenging than many traditional kinds of analysis. A network is defined by a set of entities (people, organizations, banks, computers, etc.) linked by various types of relationships. These entities and relationships are often uninteresting alone, and only become significant in aggregate. The analysis and visualization of these networks is one of the driving factors behind the creation of the Titan Toolkit. Given the broad set of problem domains and the wide ranging databases in use by the information analysis community, the Titan Toolkit's flexible, component based pipeline provides an excellent platform for constructing specific combinations of network algorithms and visualizations.

More Details

Integration of information and volume visualization for analysis of cell lineage and gene expression during embryogenesis

Proceedings of SPIE - The International Society for Optical Engineering

Cedilnik, Andrej; Baumes, Jeffrey; Ibanez, Luis; Megason, Sean; Wylie, Brian N.

Dramatic technological advances in the field of genomics have made it possible to sequence the complete genomes of many different organisms. With this overwhelming amount of data at hand, biologists are now confronted with the challenge of understanding the function of the many different elements of the genome. One of the best places to start gaining insight on the mechanisms by which the genome controls an organism is the study of embryogenesis. There are multiple and inter-related layers of information that must be established in order to understand how the genome controls the formation of an organism. One is cell lineage which describes how patterns of cell division give rise to different parts of an organism. Another is gene expression which describes when and where different genes are turned on. Both of these data types can now be acquired using fluorescent laser-scanning (confocal or 2-photon) microscopy of embryos tagged with fluorescent proteins to generate 3D movies of developing embryos. However, analyzing the wealth of resulting images requires tools capable of interactively visualizing several different types of information as well as being scalable to terabytes of data. This paper describes how the combination of existing large data volume visualization and the new Titan information visualization framework of the Visualization Toolkit (VTK) can be applied to the problem of studying the cell lineage of an organism. In particular, by linking the visualization of spatial and temporal gene expression data with novel ways of visualizing cell lineage data, users can study how the genome regulates different aspects of embryonic development. © 2008 SPIE-IS&T.

More Details

Massive graph visualization : LDRD final report

Moreland, Kenneth D.; Wylie, Brian N.

Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphs from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.

More Details

High throughput instruments, methods, and informatics for systems biology

Davidson, George S.; Sinclair, Michael B.; Thomas, Edward V.; Werner-Washburne, Margaret; Davidson, George S.; Boyack, Kevin W.; Wylie, Brian N.; Haaland, David M.; Timlin, Jerilyn A.; Keenan, Michael R.

High throughput instruments and analysis techniques are required in order to make good use of the genomic sequences that have recently become available for many species, including humans. These instruments and methods must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays represent one such high throughput method, which continue to find increasingly broad application. This project has improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, we used a series of statistically designed experiments to identify and correct errors in our microarray data to dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our research developed new informatics techniques to identify genes with significantly different expression levels. Finally, natural language processing techniques were applied to improve our ability to make use of online literature annotating the important genes. In combination, this research has improved the reliability and precision of laboratory methods and instruments, while also enabling substantially faster analysis and discovery.

More Details

Visualization of Information Spaces with VxInsight

Wylie, Brian N.; Boyack, Kevin W.; Davidson, George S.

VxInsight provides a visual mechanism for browsing, exploring and retrieving information from a database. The graphical display conveys information about the relationship between objects in several ways and on multiple scales. In this way, individual objects are always observed within a larger context. For example, consider a database consisting of a set of scientific papers. Imagine that the papers have been organized in a two dimensional geometry so that related papers are located close to each other. Now construct a landscape where the altitude reflects the local density of papers. Papers on physics will form a mountain range, and a different range will stand over the biological papers. In between will be research reports from biophysics and other bridging disciplines. Now, imagine exploring these mountains. If we zoom in closer, the physics mountains will resolve into a set of sub-disciplines. Eventually, by zooming in far enough, the individual papers become visible. By pointing and clicking you can learn more about papers of interest or retrieve their full text. Although physical proximity conveys a great deal of information about the relationship between documents, you can also see which papers reference which others, by drawing lines between the citing and cited papers. For even more information, you can choose to highlight papers by a particular researcher or a particular institution, or show the accumulation of papers through time, watching some disciplines explode and other stagnate. VxInsight is a general purpose tool, which enables this kind of interaction with wide variety of relational data: documents, patents, web pages, and financial transactions are just a few examples. The tool allows users to interactively browse, explore and retrieve information from the database in an intuitive way.

More Details

Scalable rendering on PC clusters

Wylie, Brian N.; Lewis, Vasily L.; Shirley, David N.; Pavlakos, Constantine P.

This case study presents initial results from research targeted at the development of cost-effective scalable visualization and rendering technologies. The implementations of two 3D graphics libraries based on the popular sort-last and sort-middle parallel rendering techniques are discussed. An important goal of these implementations is to provide scalable rendering capability for extremely large datasets (>> 5 million polygons). Applications can use these libraries for either run-time visualization, by linking to an existing parallel simulation, or for traditional post-processing by linking to an interactive display program. The use of parallel, hardware-accelerated rendering on commodity hardware is leveraged to achieve high performance. Current performance results show that, using current hardware (a small 16-node cluster), they can utilize up to 85% of the aggregate graphics performance and achieve rendering rates in excess of 20 million polygons/second using OpenGL{reg_sign} with lighting, Gouraud shading, and individually specified triangles (not t-stripped).

More Details
21 Results
21 Results