Abstract. Advection of trace species, or tracers, also called tracer transport, in models of the atmosphere and other physical domains is an important and potentially computationally expensive part of a model's dynamical core. Semi-Lagrangian (SL) advection methods are efficient because they permit a time step much larger than the advective stability limit for explicit Eulerian methods without requiring the solution of a globally coupled system of equations as implicit Eulerian methods do. Thus, to reduce the computational expense of tracer transport, dynamical cores often use SL methods to advect tracers. The class of interpolation semi-Lagrangian (ISL) methods contains potentially extremely efficient SL methods. We describe a finite-element ISL transport method that we call the interpolation semi-Lagrangian element-based transport (Islet) method, such as for use with atmosphere models discretized using the spectral element method. The Islet method uses three grids that share an element grid: a dynamics grid supporting, for example, the Gauss–Legendre–Lobatto basis of degree three; a physics parameterizations grid with a configurable number of finite-volume subcells per element; and a tracer grid supporting use of Islet bases with particular basis again configurable. This method provides extremely accurate tracer transport and excellent diagnostic values in a number of verification problems.
We present a new evaluation framework for implicit and explicit (IMEX) Runge-Kutta time-stepping schemes. The new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate the stability of IMEX methods and their dispersion and dissipation of gravity, Rossby, and acoustic waves. We test the new framework on a variety of IMEX schemes and use it to develop and analyze a set of second-order low-storage IMEX Runge-Kutta methods with a high Courant-Friedrichs-Lewy (CFL) number. We show that the new framework is more selective than the 2-D acoustic system previously used in the literature. Schemes that are stable for the 2-D acoustic system are not stable for the system of normal modes.
We present an effort to port the nonhydrostatic atmosphere dynamical core of the Energy Exascale Earth System Model (E3SM) to efficiently run on a variety of architectures, including conventional CPU, many-core CPU, and GPU. We specifically target cloud-resolving resolutions of 3 km and 1 km. To express on-node parallelism we use the C++ library Kokkos, which allows us to achieve a performance portable code in a largely architecture-independent way. Our C++ implementation is at least as fast as the original Fortran implementation on IBM Power9 and Intel Knights Landing processors, proving that the code refactor did not compromise the efficiency on CPU architectures. On the other hand, when using the GPUs, our implementation is able to achieve 0.97 Simulated Years Per Day, running on the full Summit supercomputer. To the best of our knowledge, this is the most achieved to date by any global atmosphere dynamical core running at such resolutions.
We present an architecture-portable and performant implementation of the atmospheric dynamical core (High-Order Methods Modeling Environment, HOMME) of the Energy Exascale Earth System Model (E3SM). The original Fortran implementation is highly performant and scalable on conventional architectures using the Message Passing Interface (MPI) and Open MultiProcessor (OpenMP) programming models. We rewrite the model in C++ and use the Kokkos library to express on-node parallelism in a largely architecture-independent implementation. Kokkos provides an abstraction of a compute node or device, layout-polymorphic multidimensional arrays, and parallel execution constructs. The new implementation achieves the same or better performance on conventional multicore computers and is portable to GPUs. We present performance data for the original and new implementations on multiple platforms, on up to 5400 compute nodes, and study several aspects of the single-and multi-node performance characteristics of the new implementation on conventional CPU (e.g., Intel Xeon), many core CPU (e.g., Intel Xeon Phi Knights Landing), and Nvidia V100 GPU.
Atmospheric tracer transport is a computationally demanding component of the atmospheric dynamical core of weather and climate simulations. Simulations typically have tens to hundreds of tracers. A tracer field is required to preserve several properties, including mass, shape, and tracer consistency. To improve computational efficiency, it is common to apply different spatial and temporal discretizations to the tracer transport equations than to the dynamical equations. Using different discretizations increases the difficulty of preserving properties. This paper provides a unified framework to analyze the property preservation problem and classes of algorithms to solve it. We examine the primary problem and a safety problem; describe three classes of algorithms to solve these; introduce new algorithms in two of these classes; make connections among the algorithms; analyze each algorithm in terms of correctness, bound on its solution magnitude, and its communication efficiency; and study numerical results. A new algorithm, QLT, has the smallest communication volume, and in an important case it redistributes mass approximately locally. These algorithms are only very loosely coupled to the underlying discretizations of the dynamical and tracer transport equations and thus are broadly and efficiently applicable. In addition, they may be applied to remap problems in applications other than tracer transport.
A set of algorithms based on characteristic discontinuous Galerkin methods is presented for tracer transport on the sphere. The algorithms are designed to reduce message passing interface communication volume per unit of simulated time relative to current methods generally, and to the spectral element scheme employed by the U.S. Department of Energy's Exascale Earth System Model (E3SM) specifically. Two methods are developed to enforce discrete mass conservation when the transport schemes are coupled to a separate dynamics solver; constrained transport and Jacobian-combined transport. A communication-efficient method is introduced to enforce tracer consistency between the transport scheme and dynamics solver; this method also provides the transport scheme's shape preservation capability. A subset of the algorithms derived here is implemented in E3SM and shown to improve transport performance by a factor of 2.2 for the model's standard configuration with 40 tracers at the strong scaling limit of one element per core.